Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the zeros of the polynomial [tex]\( P(x) = x^3 - 2x^2 + 2x - 1 \)[/tex], we need to solve for [tex]\( x \)[/tex] such that [tex]\( P(x) = 0 \)[/tex].
Let's outline the steps involved:
1. Identify the Polynomial:
The polynomial given is [tex]\( P(x) = x^3 - 2x^2 + 2x - 1 \)[/tex].
2. Set the Polynomial Equal to Zero:
To find the roots, we need to solve:
[tex]\[ x^3 - 2x^2 + 2x - 1 = 0 \][/tex]
3. Find the Zeros:
By solving the equation [tex]\( x^3 - 2x^2 + 2x - 1 = 0 \)[/tex], we obtain the following roots:
[tex]\[ x = 1, \quad x = \frac{1}{2} - \frac{\sqrt{3}i}{2}, \quad x = \frac{1}{2} + \frac{\sqrt{3}i}{2} \][/tex]
Therefore, the zeros of the polynomial [tex]\( P(x) = x^3 - 2x^2 + 2x - 1 \)[/tex] are [tex]\( 1, \frac{1}{2} - \frac{\sqrt{3}i}{2}, \)[/tex] and [tex]\( \frac{1}{2} + \frac{\sqrt{3}i}{2} \)[/tex].
These roots include one real root, [tex]\( x = 1 \)[/tex], and two complex conjugate roots, [tex]\( x = \frac{1}{2} - \frac{\sqrt{3}i}{2} \)[/tex] and [tex]\( x = \frac{1}{2} + \frac{\sqrt{3}i}{2} \)[/tex].
Hence, the zeros of the polynomial [tex]\( P(x) = x^3 - 2x^2 + 2x - 1 \)[/tex] are: [tex]\( 1, \frac{1}{2} - \frac{\sqrt{3}i}{2}, \frac{1}{2} + \frac{\sqrt{3}i}{2} \)[/tex].
Let's outline the steps involved:
1. Identify the Polynomial:
The polynomial given is [tex]\( P(x) = x^3 - 2x^2 + 2x - 1 \)[/tex].
2. Set the Polynomial Equal to Zero:
To find the roots, we need to solve:
[tex]\[ x^3 - 2x^2 + 2x - 1 = 0 \][/tex]
3. Find the Zeros:
By solving the equation [tex]\( x^3 - 2x^2 + 2x - 1 = 0 \)[/tex], we obtain the following roots:
[tex]\[ x = 1, \quad x = \frac{1}{2} - \frac{\sqrt{3}i}{2}, \quad x = \frac{1}{2} + \frac{\sqrt{3}i}{2} \][/tex]
Therefore, the zeros of the polynomial [tex]\( P(x) = x^3 - 2x^2 + 2x - 1 \)[/tex] are [tex]\( 1, \frac{1}{2} - \frac{\sqrt{3}i}{2}, \)[/tex] and [tex]\( \frac{1}{2} + \frac{\sqrt{3}i}{2} \)[/tex].
These roots include one real root, [tex]\( x = 1 \)[/tex], and two complex conjugate roots, [tex]\( x = \frac{1}{2} - \frac{\sqrt{3}i}{2} \)[/tex] and [tex]\( x = \frac{1}{2} + \frac{\sqrt{3}i}{2} \)[/tex].
Hence, the zeros of the polynomial [tex]\( P(x) = x^3 - 2x^2 + 2x - 1 \)[/tex] are: [tex]\( 1, \frac{1}{2} - \frac{\sqrt{3}i}{2}, \frac{1}{2} + \frac{\sqrt{3}i}{2} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.