Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the quotient and remainder when dividing [tex]\( x^2 - 4x + 8 \)[/tex] by [tex]\( x - 3 \)[/tex], we will use polynomial long division.
1. Set up the division:
[tex]\[ \frac{x^2 - 4x + 8}{x - 3} \][/tex]
2. Divide the first term of the numerator by the first term of the denominator:
[tex]\[ \frac{x^2}{x} = x \][/tex]
3. Multiply the whole divisor by this result (x) and subtract from the original numerator:
[tex]\[ (x^2 - 4x + 8) - (x \cdot (x - 3)) = (x^2 - 4x + 8) - (x^2 - 3x) = (-4x + 8) - (-3x) = -4x + 3x + 8 = -x + 8 \][/tex]
4. Repeat the process with the new polynomial (-x + 8):
[tex]\[ \frac{-x}{x} = -1 \][/tex]
5. Multiply the whole divisor by this result (-1) and subtract from the current polynomial:
[tex]\[ (-x + 8) - (-1 \cdot (x - 3)) = (-x + 8) - (-x + 3) = 8 - 3 = 5 \][/tex]
After these steps, the quotient is:
[tex]\[ \boxed{x - 1} \][/tex]
and the remainder is:
[tex]\[ \boxed{5} \][/tex]
1. Set up the division:
[tex]\[ \frac{x^2 - 4x + 8}{x - 3} \][/tex]
2. Divide the first term of the numerator by the first term of the denominator:
[tex]\[ \frac{x^2}{x} = x \][/tex]
3. Multiply the whole divisor by this result (x) and subtract from the original numerator:
[tex]\[ (x^2 - 4x + 8) - (x \cdot (x - 3)) = (x^2 - 4x + 8) - (x^2 - 3x) = (-4x + 8) - (-3x) = -4x + 3x + 8 = -x + 8 \][/tex]
4. Repeat the process with the new polynomial (-x + 8):
[tex]\[ \frac{-x}{x} = -1 \][/tex]
5. Multiply the whole divisor by this result (-1) and subtract from the current polynomial:
[tex]\[ (-x + 8) - (-1 \cdot (x - 3)) = (-x + 8) - (-x + 3) = 8 - 3 = 5 \][/tex]
After these steps, the quotient is:
[tex]\[ \boxed{x - 1} \][/tex]
and the remainder is:
[tex]\[ \boxed{5} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.