Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the quotient and remainder when dividing [tex]\( x^2 - 4x + 8 \)[/tex] by [tex]\( x - 3 \)[/tex], we will use polynomial long division.
1. Set up the division:
[tex]\[ \frac{x^2 - 4x + 8}{x - 3} \][/tex]
2. Divide the first term of the numerator by the first term of the denominator:
[tex]\[ \frac{x^2}{x} = x \][/tex]
3. Multiply the whole divisor by this result (x) and subtract from the original numerator:
[tex]\[ (x^2 - 4x + 8) - (x \cdot (x - 3)) = (x^2 - 4x + 8) - (x^2 - 3x) = (-4x + 8) - (-3x) = -4x + 3x + 8 = -x + 8 \][/tex]
4. Repeat the process with the new polynomial (-x + 8):
[tex]\[ \frac{-x}{x} = -1 \][/tex]
5. Multiply the whole divisor by this result (-1) and subtract from the current polynomial:
[tex]\[ (-x + 8) - (-1 \cdot (x - 3)) = (-x + 8) - (-x + 3) = 8 - 3 = 5 \][/tex]
After these steps, the quotient is:
[tex]\[ \boxed{x - 1} \][/tex]
and the remainder is:
[tex]\[ \boxed{5} \][/tex]
1. Set up the division:
[tex]\[ \frac{x^2 - 4x + 8}{x - 3} \][/tex]
2. Divide the first term of the numerator by the first term of the denominator:
[tex]\[ \frac{x^2}{x} = x \][/tex]
3. Multiply the whole divisor by this result (x) and subtract from the original numerator:
[tex]\[ (x^2 - 4x + 8) - (x \cdot (x - 3)) = (x^2 - 4x + 8) - (x^2 - 3x) = (-4x + 8) - (-3x) = -4x + 3x + 8 = -x + 8 \][/tex]
4. Repeat the process with the new polynomial (-x + 8):
[tex]\[ \frac{-x}{x} = -1 \][/tex]
5. Multiply the whole divisor by this result (-1) and subtract from the current polynomial:
[tex]\[ (-x + 8) - (-1 \cdot (x - 3)) = (-x + 8) - (-x + 3) = 8 - 3 = 5 \][/tex]
After these steps, the quotient is:
[tex]\[ \boxed{x - 1} \][/tex]
and the remainder is:
[tex]\[ \boxed{5} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.