Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the quotient and remainder when dividing [tex]\( x^2 - 4x + 8 \)[/tex] by [tex]\( x - 3 \)[/tex], we will use polynomial long division.
1. Set up the division:
[tex]\[ \frac{x^2 - 4x + 8}{x - 3} \][/tex]
2. Divide the first term of the numerator by the first term of the denominator:
[tex]\[ \frac{x^2}{x} = x \][/tex]
3. Multiply the whole divisor by this result (x) and subtract from the original numerator:
[tex]\[ (x^2 - 4x + 8) - (x \cdot (x - 3)) = (x^2 - 4x + 8) - (x^2 - 3x) = (-4x + 8) - (-3x) = -4x + 3x + 8 = -x + 8 \][/tex]
4. Repeat the process with the new polynomial (-x + 8):
[tex]\[ \frac{-x}{x} = -1 \][/tex]
5. Multiply the whole divisor by this result (-1) and subtract from the current polynomial:
[tex]\[ (-x + 8) - (-1 \cdot (x - 3)) = (-x + 8) - (-x + 3) = 8 - 3 = 5 \][/tex]
After these steps, the quotient is:
[tex]\[ \boxed{x - 1} \][/tex]
and the remainder is:
[tex]\[ \boxed{5} \][/tex]
1. Set up the division:
[tex]\[ \frac{x^2 - 4x + 8}{x - 3} \][/tex]
2. Divide the first term of the numerator by the first term of the denominator:
[tex]\[ \frac{x^2}{x} = x \][/tex]
3. Multiply the whole divisor by this result (x) and subtract from the original numerator:
[tex]\[ (x^2 - 4x + 8) - (x \cdot (x - 3)) = (x^2 - 4x + 8) - (x^2 - 3x) = (-4x + 8) - (-3x) = -4x + 3x + 8 = -x + 8 \][/tex]
4. Repeat the process with the new polynomial (-x + 8):
[tex]\[ \frac{-x}{x} = -1 \][/tex]
5. Multiply the whole divisor by this result (-1) and subtract from the current polynomial:
[tex]\[ (-x + 8) - (-1 \cdot (x - 3)) = (-x + 8) - (-x + 3) = 8 - 3 = 5 \][/tex]
After these steps, the quotient is:
[tex]\[ \boxed{x - 1} \][/tex]
and the remainder is:
[tex]\[ \boxed{5} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.