Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the given system of equations, we can use the method of substitution. Here is a step-by-step solution:
Given system of equations:
[tex]\[ \begin{array}{l} 2y = -x + 9 \tag{1} \\ 3x - 6y = -15 \tag{2} \end{array} \][/tex]
Step 1: Solve equation (1) for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex].
[tex]\[ 2y = -x + 9 \][/tex]
Divide both sides by 2 to isolate [tex]\(y\)[/tex]:
[tex]\[ y = \frac{-x + 9}{2} \][/tex]
Step 2: Substitute the expression for [tex]\(y\)[/tex] from Step 1 into equation (2).
[tex]\[ 3x - 6 \left(\frac{-x + 9}{2}\right) = -15 \][/tex]
Step 3: Simplify the substituted equation.
[tex]\[ 3x - 3(-x + 9) = -15 \][/tex]
Distribute the [tex]\(-3\)[/tex]:
[tex]\[ 3x + 3x - 27 = -15 \][/tex]
Combine like terms:
[tex]\[ 6x - 27 = -15 \][/tex]
Step 4: Solve for [tex]\(x\)[/tex].
[tex]\[ 6x = -15 + 27 \][/tex]
[tex]\[ 6x = 12 \][/tex]
[tex]\[ x = \frac{12}{6} \][/tex]
[tex]\[ x = 2 \][/tex]
Step 5: Substitute [tex]\(x = 2\)[/tex] back into the expression for [tex]\(y\)[/tex] from Step 1.
[tex]\[ y = \frac{-x + 9}{2} \][/tex]
[tex]\[ y = \frac{-2 + 9}{2} \][/tex]
[tex]\[ y = \frac{7}{2} \][/tex]
[tex]\[ y = 3.5 \][/tex]
So, the solution to the system of equations is [tex]\((x, y) = (2, 3.5)\)[/tex].
Therefore, the solution to the system is [tex]\(\boxed{2}, \boxed{3.5}\)[/tex].
Given system of equations:
[tex]\[ \begin{array}{l} 2y = -x + 9 \tag{1} \\ 3x - 6y = -15 \tag{2} \end{array} \][/tex]
Step 1: Solve equation (1) for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex].
[tex]\[ 2y = -x + 9 \][/tex]
Divide both sides by 2 to isolate [tex]\(y\)[/tex]:
[tex]\[ y = \frac{-x + 9}{2} \][/tex]
Step 2: Substitute the expression for [tex]\(y\)[/tex] from Step 1 into equation (2).
[tex]\[ 3x - 6 \left(\frac{-x + 9}{2}\right) = -15 \][/tex]
Step 3: Simplify the substituted equation.
[tex]\[ 3x - 3(-x + 9) = -15 \][/tex]
Distribute the [tex]\(-3\)[/tex]:
[tex]\[ 3x + 3x - 27 = -15 \][/tex]
Combine like terms:
[tex]\[ 6x - 27 = -15 \][/tex]
Step 4: Solve for [tex]\(x\)[/tex].
[tex]\[ 6x = -15 + 27 \][/tex]
[tex]\[ 6x = 12 \][/tex]
[tex]\[ x = \frac{12}{6} \][/tex]
[tex]\[ x = 2 \][/tex]
Step 5: Substitute [tex]\(x = 2\)[/tex] back into the expression for [tex]\(y\)[/tex] from Step 1.
[tex]\[ y = \frac{-x + 9}{2} \][/tex]
[tex]\[ y = \frac{-2 + 9}{2} \][/tex]
[tex]\[ y = \frac{7}{2} \][/tex]
[tex]\[ y = 3.5 \][/tex]
So, the solution to the system of equations is [tex]\((x, y) = (2, 3.5)\)[/tex].
Therefore, the solution to the system is [tex]\(\boxed{2}, \boxed{3.5}\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.