Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the compound inequality [tex]\(5x - 4 \geq 12 \quad \text{OR} \quad 12x + 5 \leq -4\)[/tex], we need to solve each inequality separately and then combine the solutions.
### Solving the First Inequality: [tex]\(5x - 4 \geq 12\)[/tex]
1. Add 4 to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 5x - 4 + 4 \geq 12 + 4 \][/tex]
[tex]\[ 5x \geq 16 \][/tex]
2. Divide both sides by 5:
[tex]\[ x \geq \frac{16}{5} \][/tex]
[tex]\[ x \geq 3.2 \][/tex]
The solution to the first inequality is [tex]\(x \geq 3.2\)[/tex].
### Solving the Second Inequality: [tex]\(12x + 5 \leq -4\)[/tex]
1. Subtract 5 from both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 12x + 5 - 5 \leq -4 - 5 \][/tex]
[tex]\[ 12x \leq -9 \][/tex]
2. Divide both sides by 12:
[tex]\[ x \leq \frac{-9}{12} \][/tex]
Simplify the fraction:
[tex]\[ x \leq -\frac{3}{4} \][/tex]
[tex]\[ x \leq -0.75 \][/tex]
The solution to the second inequality is [tex]\(x \leq -0.75\)[/tex].
### Combining the Solutions
Since the original problem asks for [tex]\(x\)[/tex] values that satisfy either inequality, we combine the two sets of solutions. Therefore, the solution to the compound inequality [tex]\(5x - 4 \geq 12 \quad \text{OR} \quad 12x + 5 \leq -4\)[/tex] is:
[tex]\[ x \geq 3.2 \quad \text{OR} \quad x \leq -0.75 \][/tex]
In interval notation, this solution can be expressed as:
[tex]\[ (-\infty, -0.75] \cup [3.2, \infty) \][/tex]
So, the final answer is:
[tex]\[ (-\infty, -0.75] \cup [3.2, \infty) \][/tex]
### Solving the First Inequality: [tex]\(5x - 4 \geq 12\)[/tex]
1. Add 4 to both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 5x - 4 + 4 \geq 12 + 4 \][/tex]
[tex]\[ 5x \geq 16 \][/tex]
2. Divide both sides by 5:
[tex]\[ x \geq \frac{16}{5} \][/tex]
[tex]\[ x \geq 3.2 \][/tex]
The solution to the first inequality is [tex]\(x \geq 3.2\)[/tex].
### Solving the Second Inequality: [tex]\(12x + 5 \leq -4\)[/tex]
1. Subtract 5 from both sides to isolate the term with [tex]\(x\)[/tex]:
[tex]\[ 12x + 5 - 5 \leq -4 - 5 \][/tex]
[tex]\[ 12x \leq -9 \][/tex]
2. Divide both sides by 12:
[tex]\[ x \leq \frac{-9}{12} \][/tex]
Simplify the fraction:
[tex]\[ x \leq -\frac{3}{4} \][/tex]
[tex]\[ x \leq -0.75 \][/tex]
The solution to the second inequality is [tex]\(x \leq -0.75\)[/tex].
### Combining the Solutions
Since the original problem asks for [tex]\(x\)[/tex] values that satisfy either inequality, we combine the two sets of solutions. Therefore, the solution to the compound inequality [tex]\(5x - 4 \geq 12 \quad \text{OR} \quad 12x + 5 \leq -4\)[/tex] is:
[tex]\[ x \geq 3.2 \quad \text{OR} \quad x \leq -0.75 \][/tex]
In interval notation, this solution can be expressed as:
[tex]\[ (-\infty, -0.75] \cup [3.2, \infty) \][/tex]
So, the final answer is:
[tex]\[ (-\infty, -0.75] \cup [3.2, \infty) \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.