Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which system the ordered pair [tex]\((3, -1)\)[/tex] is a solution of, we need to check each system of inequalities one by one.
1. System 1:
[tex]\[ \left\{ \begin{array}{l} y \geq x + 1 \\ y \leq -2 \end{array} \right. \][/tex]
Let's check each condition:
[tex]\[ y \geq x + 1 \implies -1 \geq 3 + 1 \implies -1 \geq 4 \quad \text{(False)} \][/tex]
[tex]\[ y \leq -2 \implies -1 \leq -2 \quad \text{(False)} \][/tex]
Since both conditions are false, the ordered pair [tex]\((3, -1)\)[/tex] is not a solution to System 1.
2. System 2:
[tex]\[ \left\{ \begin{array}{l} y \leq x + 1 \\ y \geq -2 \end{array} \right. \][/tex]
Let's check each condition:
[tex]\[ y \leq x + 1 \implies -1 \leq 3 + 1 \implies -1 \leq 4 \quad \text{(True)} \][/tex]
[tex]\[ y \geq -2 \implies -1 \geq -2 \quad \text{(True)} \][/tex]
Since both conditions are true, the ordered pair [tex]\((3, -1)\)[/tex] is a solution to System 2.
3. System 3:
[tex]\[ \left\{ \begin{array}{l} y > x + 1 \\ y > -2 \end{array} \right. \][/tex]
Let's check each condition:
[tex]\[ y > x + 1 \implies -1 > 3 + 1 \implies -1 > 4 \quad \text{(False)} \][/tex]
[tex]\[ y > -2 \implies -1 > -2 \quad \text{(True)} \][/tex]
Since not both conditions are true, the ordered pair [tex]\((3, -1)\)[/tex] is not a solution to System 3.
4. System 4:
[tex]\[ \left\{ \begin{array}{l} y < x + 1 \\ y < -2 \end{array} \right. \][/tex]
Let's check each condition:
[tex]\[ y < x + 1 \implies -1 < 3 + 1 \implies -1 < 4 \quad \text{(True)} \][/tex]
[tex]\[ y < -2 \implies -1 < -2 \quad \text{(False)} \][/tex]
Since not both conditions are true, the ordered pair [tex]\((3, -1)\)[/tex] is not a solution to System 4.
After evaluating each system of inequalities, we find that the ordered pair [tex]\((3, -1)\)[/tex] satisfies System 2:
[tex]\[ \left\{ \begin{array}{l} y \leq x + 1 \\ y \geq -2 \end{array} \right. \][/tex]
1. System 1:
[tex]\[ \left\{ \begin{array}{l} y \geq x + 1 \\ y \leq -2 \end{array} \right. \][/tex]
Let's check each condition:
[tex]\[ y \geq x + 1 \implies -1 \geq 3 + 1 \implies -1 \geq 4 \quad \text{(False)} \][/tex]
[tex]\[ y \leq -2 \implies -1 \leq -2 \quad \text{(False)} \][/tex]
Since both conditions are false, the ordered pair [tex]\((3, -1)\)[/tex] is not a solution to System 1.
2. System 2:
[tex]\[ \left\{ \begin{array}{l} y \leq x + 1 \\ y \geq -2 \end{array} \right. \][/tex]
Let's check each condition:
[tex]\[ y \leq x + 1 \implies -1 \leq 3 + 1 \implies -1 \leq 4 \quad \text{(True)} \][/tex]
[tex]\[ y \geq -2 \implies -1 \geq -2 \quad \text{(True)} \][/tex]
Since both conditions are true, the ordered pair [tex]\((3, -1)\)[/tex] is a solution to System 2.
3. System 3:
[tex]\[ \left\{ \begin{array}{l} y > x + 1 \\ y > -2 \end{array} \right. \][/tex]
Let's check each condition:
[tex]\[ y > x + 1 \implies -1 > 3 + 1 \implies -1 > 4 \quad \text{(False)} \][/tex]
[tex]\[ y > -2 \implies -1 > -2 \quad \text{(True)} \][/tex]
Since not both conditions are true, the ordered pair [tex]\((3, -1)\)[/tex] is not a solution to System 3.
4. System 4:
[tex]\[ \left\{ \begin{array}{l} y < x + 1 \\ y < -2 \end{array} \right. \][/tex]
Let's check each condition:
[tex]\[ y < x + 1 \implies -1 < 3 + 1 \implies -1 < 4 \quad \text{(True)} \][/tex]
[tex]\[ y < -2 \implies -1 < -2 \quad \text{(False)} \][/tex]
Since not both conditions are true, the ordered pair [tex]\((3, -1)\)[/tex] is not a solution to System 4.
After evaluating each system of inequalities, we find that the ordered pair [tex]\((3, -1)\)[/tex] satisfies System 2:
[tex]\[ \left\{ \begin{array}{l} y \leq x + 1 \\ y \geq -2 \end{array} \right. \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.