Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Check whether [tex]\(\sqrt{3}\)[/tex] and [tex]\(-\sqrt{3}\)[/tex] are zeroes of the polynomial [tex]\(x^2 - 3\)[/tex].

Sagot :

To determine whether [tex]\(\sqrt{3}\)[/tex] and [tex]\(-\sqrt{3}\)[/tex] are zeroes of the polynomial [tex]\(x^2 - 3\)[/tex], we need to evaluate the polynomial at these points and see if the result is equal to zero.

1. Evaluate the polynomial at [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ P(\sqrt{3}) = (\sqrt{3})^2 - 3 \][/tex]
[tex]\[ P(\sqrt{3}) = 3 - 3 = 0 \][/tex]

2. Evaluate the polynomial at [tex]\(-\sqrt{3}\)[/tex]:
[tex]\[ P(-\sqrt{3}) = (-\sqrt{3})^2 - 3 \][/tex]
[tex]\[ P(-\sqrt{3}) = 3 - 3 = 0 \][/tex]

However, when we perform the actual calculations, we find:
[tex]\[ P(\sqrt{3}) \approx -4.440892098500626e-16 \][/tex]
[tex]\[ P(-\sqrt{3}) \approx -4.440892098500626e-16 \][/tex]

These values, [tex]\(-4.440892098500626e-16\)[/tex], are extremely close to zero but not exactly zero due to numerical precision issues.

3. Verify if these values are indeed zero:
- For [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ P(\sqrt{3}) \neq 0 \][/tex]
- For [tex]\(-\sqrt{3}\)[/tex]:
[tex]\[ P(-\sqrt{3}) \neq 0 \][/tex]

Thus, neither [tex]\(\sqrt{3}\)[/tex] nor [tex]\(-\sqrt{3}\)[/tex] are exact zeroes of the polynomial [tex]\(x^2 - 3\)[/tex] given the numerical precision observed.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.