At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To divide the polynomial [tex]\( P(x) = 8x^2 - 3x - 17 \)[/tex] by [tex]\( D(x) = 4x - 1 \)[/tex], we can use polynomial long division. Our goal is to express the quotient in the form:
[tex]\[ \frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)} \][/tex]
where [tex]\( Q(x) \)[/tex] is the quotient and [tex]\( R(x) \)[/tex] is the remainder.
Let's go through the steps in polynomial long division:
1. Setup: Write the division as:
[tex]\[ \frac{8x^2 - 3x - 17}{4x - 1} \][/tex]
2. First Division:
- Divide the leading term of the numerator [tex]\( 8x^2 \)[/tex] by the leading term of the denominator [tex]\( 4x \)[/tex]. This gives:
[tex]\[ \frac{8x^2}{4x} = 2x \][/tex]
- Multiply the entire divisor by [tex]\( 2x \)[/tex]:
[tex]\[ (4x - 1) \cdot 2x = 8x^2 - 2x \][/tex]
- Subtract this result from the original polynomial:
[tex]\[ (8x^2 - 3x - 17) - (8x^2 - 2x) = -x - 17 \][/tex]
3. Second Division:
- Divide the new leading term [tex]\( -x \)[/tex] by the leading term of the divisor [tex]\( 4x \)[/tex]:
[tex]\[ \frac{-x}{4x} = -\frac{1}{4} \][/tex]
- Multiply the divisor by [tex]\(-\frac{1}{4}\)[/tex]:
[tex]\[ (4x - 1) \cdot -\frac{1}{4} = -x + \frac{1}{4} \][/tex]
- Subtract this result from the polynomial:
[tex]\[ (-x - 17) - (-x + \frac{1}{4}) = -17 - \frac{1}{4} = -\frac{68}{4} - \frac{1}{4} = -\frac{69}{4} \][/tex]
So, our quotient ([tex]\( Q(x) \)[/tex]) and remainder ([tex]\( R(x) \)[/tex]) are:
[tex]\[ Q(x) = 2x - \frac{1}{4}, \quad R(x) = -\frac{69}{4} \][/tex]
Therefore, we can write the division as:
[tex]\[ \frac{P(x)}{D(x)} = 2x - \frac{1}{4} + \frac{-\frac{69}{4}}{4x - 1} \][/tex]
In a more simplified form, it will be:
[tex]\[ \frac{P(x)}{D(x)} = 2x - \frac{1}{4} + \frac{-69}{4(4x - 1)} \][/tex]
[tex]\[ \frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)} \][/tex]
where [tex]\( Q(x) \)[/tex] is the quotient and [tex]\( R(x) \)[/tex] is the remainder.
Let's go through the steps in polynomial long division:
1. Setup: Write the division as:
[tex]\[ \frac{8x^2 - 3x - 17}{4x - 1} \][/tex]
2. First Division:
- Divide the leading term of the numerator [tex]\( 8x^2 \)[/tex] by the leading term of the denominator [tex]\( 4x \)[/tex]. This gives:
[tex]\[ \frac{8x^2}{4x} = 2x \][/tex]
- Multiply the entire divisor by [tex]\( 2x \)[/tex]:
[tex]\[ (4x - 1) \cdot 2x = 8x^2 - 2x \][/tex]
- Subtract this result from the original polynomial:
[tex]\[ (8x^2 - 3x - 17) - (8x^2 - 2x) = -x - 17 \][/tex]
3. Second Division:
- Divide the new leading term [tex]\( -x \)[/tex] by the leading term of the divisor [tex]\( 4x \)[/tex]:
[tex]\[ \frac{-x}{4x} = -\frac{1}{4} \][/tex]
- Multiply the divisor by [tex]\(-\frac{1}{4}\)[/tex]:
[tex]\[ (4x - 1) \cdot -\frac{1}{4} = -x + \frac{1}{4} \][/tex]
- Subtract this result from the polynomial:
[tex]\[ (-x - 17) - (-x + \frac{1}{4}) = -17 - \frac{1}{4} = -\frac{68}{4} - \frac{1}{4} = -\frac{69}{4} \][/tex]
So, our quotient ([tex]\( Q(x) \)[/tex]) and remainder ([tex]\( R(x) \)[/tex]) are:
[tex]\[ Q(x) = 2x - \frac{1}{4}, \quad R(x) = -\frac{69}{4} \][/tex]
Therefore, we can write the division as:
[tex]\[ \frac{P(x)}{D(x)} = 2x - \frac{1}{4} + \frac{-\frac{69}{4}}{4x - 1} \][/tex]
In a more simplified form, it will be:
[tex]\[ \frac{P(x)}{D(x)} = 2x - \frac{1}{4} + \frac{-69}{4(4x - 1)} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.