Answered

Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find all solutions to the equation:

[tex]\(2x + 6 = |x|\)[/tex]

If you find more than one, list the values separated by commas. If there is no solution, write "none."


Sagot :

To solve the equation [tex]\(2x + 6 = |x|\)[/tex], we need to look at the scenarios separately, depending on the value of [tex]\(x\)[/tex], because the absolute value function splits into two cases.

### Case 1: [tex]\(x \geq 0\)[/tex]
In this case, [tex]\(|x| = x\)[/tex], so the equation becomes:
[tex]\[ 2x + 6 = x \][/tex]

Let's solve this:
[tex]\[ 2x - x + 6 = 0 \][/tex]
[tex]\[ x + 6 = 0 \][/tex]
[tex]\[ x = -6 \][/tex]

However, we assumed [tex]\(x \geq 0\)[/tex]. Since [tex]\(-6\)[/tex] does not satisfy this condition, there is no valid solution in this case.

### Case 2: [tex]\(x < 0\)[/tex]
In this case, [tex]\(|x| = -x\)[/tex], so the equation becomes:
[tex]\[ 2x + 6 = -x \][/tex]

Let's solve this:
[tex]\[ 2x + x + 6 = 0 \][/tex]
[tex]\[ 3x + 6 = 0 \][/tex]
[tex]\[ 3x = -6 \][/tex]
[tex]\[ x = -2 \][/tex]

We need to check if [tex]\(-2\)[/tex] satisfies the condition of [tex]\(x < 0\)[/tex]. Since [tex]\(-2 < 0\)[/tex], it is a valid solution.

### Summary
By examining both cases, the only solution that satisfies the equation is:
[tex]\[ x = -2 \][/tex]

Thus, the solution to the equation [tex]\(2x + 6 = |x|\)[/tex] is:
[tex]\[ \boxed{-2} \][/tex]