Answered

At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

What is the value of [tex]\( \log_5(125) + \log_5(5^7) \)[/tex] ?

Sagot :

To find the value of [tex]\(\log_5(125) + \log_5\left(5^7\right)\)[/tex], let's break it down step by step.

1. Evaluate [tex]\(\log_5(125)\)[/tex]:
- We recognize that [tex]\(125\)[/tex] can be expressed as a power of [tex]\(5\)[/tex]: [tex]\(125 = 5^3\)[/tex].
- Using the property of logarithms [tex]\(\log_b(b^x) = x\)[/tex], we have:
[tex]\[ \log_5(125) = \log_5(5^3) = 3.0000000000000004 \][/tex]

2. Evaluate [tex]\(\log_5\left(5^7\right)\)[/tex]:
- Here, [tex]\(5^7\)[/tex] is already expressed as a power of [tex]\(5\)[/tex].
- Again using the property of logarithms [tex]\(\log_b(b^x) = x\)[/tex], we get:
[tex]\[ \log_5(5^7) = 7.0 \][/tex]

3. Sum the logarithms:
- Now, add the two logarithmic results together:
[tex]\[ \log_5(125) + \log_5(5^7) = 3.0000000000000004 + 7.0 = 10.0 \][/tex]

Thus, the value of [tex]\(\log_5(125) + \log_5\left(5^7\right)\)[/tex] is [tex]\(10.0\)[/tex].