Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the domain of the function
[tex]\[ f(x) = \log_7 (x - 3) - 5, \][/tex]
we need to consider when the expression inside the logarithm is defined. The logarithm function [tex]\( \log_b(y) \)[/tex] is defined only if [tex]\( y > 0 \)[/tex].
In this case, the argument of the logarithm [tex]\( (x - 3) \)[/tex] needs to be greater than 0. Thus, we set up the inequality:
[tex]\[ x - 3 > 0. \][/tex]
Now, we solve this inequality for [tex]\( x \)[/tex]:
[tex]\[ x > 3. \][/tex]
This means that [tex]\( x \)[/tex] must be greater than 3 for the function to be valid.
In interval notation, the domain of the function can be written as:
[tex]\[ (3, \infty). \][/tex]
So, the domain of the function [tex]\( f(x) = \log_7 (x - 3) - 5 \)[/tex] is
[tex]\[ (3, \infty). \][/tex]
[tex]\[ f(x) = \log_7 (x - 3) - 5, \][/tex]
we need to consider when the expression inside the logarithm is defined. The logarithm function [tex]\( \log_b(y) \)[/tex] is defined only if [tex]\( y > 0 \)[/tex].
In this case, the argument of the logarithm [tex]\( (x - 3) \)[/tex] needs to be greater than 0. Thus, we set up the inequality:
[tex]\[ x - 3 > 0. \][/tex]
Now, we solve this inequality for [tex]\( x \)[/tex]:
[tex]\[ x > 3. \][/tex]
This means that [tex]\( x \)[/tex] must be greater than 3 for the function to be valid.
In interval notation, the domain of the function can be written as:
[tex]\[ (3, \infty). \][/tex]
So, the domain of the function [tex]\( f(x) = \log_7 (x - 3) - 5 \)[/tex] is
[tex]\[ (3, \infty). \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.