Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's break down the given conditional statement step-by-step:
The given statement is: "If 3 is an even number, then [tex]\(5 + 3 = 8\)[/tex]."
1. Identify the Hypothesis and Conclusion:
- Hypothesis ([tex]\( p \)[/tex]): "3 is an even number."
- Conclusion ([tex]\( q \)[/tex]): "[tex]\(5 + 3 = 8\)[/tex]."
2. Determine the truth value of the Hypothesis:
- The hypothesis "3 is an even number" is false because 3 is not an even number; it is an odd number.
3. Determine the truth value of the Conclusion:
- The conclusion "[tex]\(5 + 3 = 8\)[/tex]" is true because, indeed, [tex]\(5 + 3\)[/tex] equals 8.
4. Analyze the Conditional Statement:
- A conditional statement "If [tex]\( p \)[/tex], then [tex]\( q \)[/tex]" ([tex]\( p \rightarrow q \)[/tex]) is evaluated based on the truth values of [tex]\( p \)[/tex] (the hypothesis) and [tex]\( q \)[/tex] (the conclusion).
- A conditional statement is true in all cases except when [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is false.
The possible scenarios are:
- [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is true → Conditional statement is true.
- [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is false → Conditional statement is false.
- [tex]\( p \)[/tex] is false and [tex]\( q \)[/tex] is true → Conditional statement is true.
- [tex]\( p \)[/tex] is false and [tex]\( q \)[/tex] is false → Conditional statement is true.
In our case:
- [tex]\( p \)[/tex] (the hypothesis) is false.
- [tex]\( q \)[/tex] (the conclusion) is true.
- Since [tex]\( p \)[/tex] is false and [tex]\( q \)[/tex] is true, the conditional statement "If [tex]\( p \)[/tex], then [tex]\( q \)[/tex]" is true.
So, the truth value of the given conditional statement "If 3 is an even number, then [tex]\( 5 + 3 = 8 \)[/tex]" is true.
The given statement is: "If 3 is an even number, then [tex]\(5 + 3 = 8\)[/tex]."
1. Identify the Hypothesis and Conclusion:
- Hypothesis ([tex]\( p \)[/tex]): "3 is an even number."
- Conclusion ([tex]\( q \)[/tex]): "[tex]\(5 + 3 = 8\)[/tex]."
2. Determine the truth value of the Hypothesis:
- The hypothesis "3 is an even number" is false because 3 is not an even number; it is an odd number.
3. Determine the truth value of the Conclusion:
- The conclusion "[tex]\(5 + 3 = 8\)[/tex]" is true because, indeed, [tex]\(5 + 3\)[/tex] equals 8.
4. Analyze the Conditional Statement:
- A conditional statement "If [tex]\( p \)[/tex], then [tex]\( q \)[/tex]" ([tex]\( p \rightarrow q \)[/tex]) is evaluated based on the truth values of [tex]\( p \)[/tex] (the hypothesis) and [tex]\( q \)[/tex] (the conclusion).
- A conditional statement is true in all cases except when [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is false.
The possible scenarios are:
- [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is true → Conditional statement is true.
- [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is false → Conditional statement is false.
- [tex]\( p \)[/tex] is false and [tex]\( q \)[/tex] is true → Conditional statement is true.
- [tex]\( p \)[/tex] is false and [tex]\( q \)[/tex] is false → Conditional statement is true.
In our case:
- [tex]\( p \)[/tex] (the hypothesis) is false.
- [tex]\( q \)[/tex] (the conclusion) is true.
- Since [tex]\( p \)[/tex] is false and [tex]\( q \)[/tex] is true, the conditional statement "If [tex]\( p \)[/tex], then [tex]\( q \)[/tex]" is true.
So, the truth value of the given conditional statement "If 3 is an even number, then [tex]\( 5 + 3 = 8 \)[/tex]" is true.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.