At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's go through each part of the question step by step.
### (a) Express [tex]\( f(x) \)[/tex] in standard form
The standard form (also called vertex form) of a quadratic function is:
[tex]\[ f(x) = a(x - h)^2 + k \][/tex]
where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
The given quadratic function is [tex]\( f(x) = 4x^2 + 8x + 5 \)[/tex].
To convert this to standard form, we can complete the square:
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ f(x) = 4(x^2 + 2x) + 5 \][/tex]
2. Complete the square inside the parentheses:
- Take half of the coefficient of [tex]\( x \)[/tex], which is 2, and square it: [tex]\( \left(\frac{2}{2}\right)^2 = 1 \)[/tex]
- Add and subtract this square inside the parentheses:
[tex]\[ 4(x^2 + 2x + 1 - 1) + 5 = 4((x + 1)^2 - 1) + 5 \][/tex]
3. Distribute the 4 and simplify:
[tex]\[ 4(x + 1)^2 - 4 + 5 = 4(x + 1)^2 + 1 \][/tex]
So the standard (vertex) form of the function is:
[tex]\[ f(x) = 4(x + 1)^2 + 1 \][/tex]
### (b) Find the vertex and [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-intercepts
Vertex:
From the vertex form [tex]\( f(x) = 4(x + 1)^2 + 1 \)[/tex], the vertex [tex]\((h, k)\)[/tex] is [tex]\(( -1, 1 )\)[/tex].
x-intercepts:
The [tex]\( x \)[/tex]-intercepts occur where [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ 4x^2 + 8x + 5 = 0 \][/tex]
We can solve this quadratic equation using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 4 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = 5 \)[/tex]:
[tex]\[ x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 4 \cdot 5}}{2 \cdot 4} = \frac{-8 \pm \sqrt{64 - 80}}{8} = \frac{-8 \pm \sqrt{-16}}{8} = \frac{-8 \pm 4i}{8} = \frac{-2 \pm i}{2} \][/tex]
Since the discriminant ([tex]\( \sqrt{-16} \)[/tex]) is negative, the quadratic equation has no real solutions; hence, there are no real [tex]\( x \)[/tex]-intercepts. Therefore:
[tex]\[ \text{x-intercept: } (x, y) = \text{DNE} \][/tex]
y-intercept:
The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 4(0)^2 + 8(0) + 5 = 5 \][/tex]
So the [tex]\( y \)[/tex]-intercept is:
[tex]\[ \text{y-intercept: } (x, y) = (0, 5) \][/tex]
### (c) Sketch a graph of [tex]\( f \)[/tex]
To sketch the graph of [tex]\( f(x) = 4x^2 + 8x + 5 \)[/tex]:
1. Plot the vertex at [tex]\( (-1, 1) \)[/tex].
2. Plot the y-intercept at [tex]\( (0, 5) \)[/tex].
3. Determine the direction of the parabola:
The coefficient of [tex]\( x^2 \)[/tex] is 4 (which is positive), so the parabola opens upwards.
Here is a rough sketch of the graph:
```plain
y
↑
10 + . .
| . .
5 + . (0,5)
| .
0 +_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| . (−1,1)
−5 + . .
| . .
−10+_____________________________.: x
−10 −5 0 5 10
```
The vertex at [tex]\((-1, 1)\)[/tex] represents the minimum point of the parabola, and the [tex]\(y\)[/tex]-intercept at [tex]\( (0, 5) \)[/tex] shows where the graph crosses the [tex]\( y \)[/tex]-axis. The parabola opens upwards indicating that for very large positive or negative values of [tex]\(x\)[/tex], [tex]\(f(x)\)[/tex] will take very large positive values.
### (a) Express [tex]\( f(x) \)[/tex] in standard form
The standard form (also called vertex form) of a quadratic function is:
[tex]\[ f(x) = a(x - h)^2 + k \][/tex]
where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
The given quadratic function is [tex]\( f(x) = 4x^2 + 8x + 5 \)[/tex].
To convert this to standard form, we can complete the square:
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ f(x) = 4(x^2 + 2x) + 5 \][/tex]
2. Complete the square inside the parentheses:
- Take half of the coefficient of [tex]\( x \)[/tex], which is 2, and square it: [tex]\( \left(\frac{2}{2}\right)^2 = 1 \)[/tex]
- Add and subtract this square inside the parentheses:
[tex]\[ 4(x^2 + 2x + 1 - 1) + 5 = 4((x + 1)^2 - 1) + 5 \][/tex]
3. Distribute the 4 and simplify:
[tex]\[ 4(x + 1)^2 - 4 + 5 = 4(x + 1)^2 + 1 \][/tex]
So the standard (vertex) form of the function is:
[tex]\[ f(x) = 4(x + 1)^2 + 1 \][/tex]
### (b) Find the vertex and [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-intercepts
Vertex:
From the vertex form [tex]\( f(x) = 4(x + 1)^2 + 1 \)[/tex], the vertex [tex]\((h, k)\)[/tex] is [tex]\(( -1, 1 )\)[/tex].
x-intercepts:
The [tex]\( x \)[/tex]-intercepts occur where [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ 4x^2 + 8x + 5 = 0 \][/tex]
We can solve this quadratic equation using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 4 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = 5 \)[/tex]:
[tex]\[ x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 4 \cdot 5}}{2 \cdot 4} = \frac{-8 \pm \sqrt{64 - 80}}{8} = \frac{-8 \pm \sqrt{-16}}{8} = \frac{-8 \pm 4i}{8} = \frac{-2 \pm i}{2} \][/tex]
Since the discriminant ([tex]\( \sqrt{-16} \)[/tex]) is negative, the quadratic equation has no real solutions; hence, there are no real [tex]\( x \)[/tex]-intercepts. Therefore:
[tex]\[ \text{x-intercept: } (x, y) = \text{DNE} \][/tex]
y-intercept:
The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 4(0)^2 + 8(0) + 5 = 5 \][/tex]
So the [tex]\( y \)[/tex]-intercept is:
[tex]\[ \text{y-intercept: } (x, y) = (0, 5) \][/tex]
### (c) Sketch a graph of [tex]\( f \)[/tex]
To sketch the graph of [tex]\( f(x) = 4x^2 + 8x + 5 \)[/tex]:
1. Plot the vertex at [tex]\( (-1, 1) \)[/tex].
2. Plot the y-intercept at [tex]\( (0, 5) \)[/tex].
3. Determine the direction of the parabola:
The coefficient of [tex]\( x^2 \)[/tex] is 4 (which is positive), so the parabola opens upwards.
Here is a rough sketch of the graph:
```plain
y
↑
10 + . .
| . .
5 + . (0,5)
| .
0 +_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| . (−1,1)
−5 + . .
| . .
−10+_____________________________.: x
−10 −5 0 5 10
```
The vertex at [tex]\((-1, 1)\)[/tex] represents the minimum point of the parabola, and the [tex]\(y\)[/tex]-intercept at [tex]\( (0, 5) \)[/tex] shows where the graph crosses the [tex]\( y \)[/tex]-axis. The parabola opens upwards indicating that for very large positive or negative values of [tex]\(x\)[/tex], [tex]\(f(x)\)[/tex] will take very large positive values.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.