Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's go through each part of the question step by step.
### (a) Express [tex]\( f(x) \)[/tex] in standard form
The standard form (also called vertex form) of a quadratic function is:
[tex]\[ f(x) = a(x - h)^2 + k \][/tex]
where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
The given quadratic function is [tex]\( f(x) = 4x^2 + 8x + 5 \)[/tex].
To convert this to standard form, we can complete the square:
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ f(x) = 4(x^2 + 2x) + 5 \][/tex]
2. Complete the square inside the parentheses:
- Take half of the coefficient of [tex]\( x \)[/tex], which is 2, and square it: [tex]\( \left(\frac{2}{2}\right)^2 = 1 \)[/tex]
- Add and subtract this square inside the parentheses:
[tex]\[ 4(x^2 + 2x + 1 - 1) + 5 = 4((x + 1)^2 - 1) + 5 \][/tex]
3. Distribute the 4 and simplify:
[tex]\[ 4(x + 1)^2 - 4 + 5 = 4(x + 1)^2 + 1 \][/tex]
So the standard (vertex) form of the function is:
[tex]\[ f(x) = 4(x + 1)^2 + 1 \][/tex]
### (b) Find the vertex and [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-intercepts
Vertex:
From the vertex form [tex]\( f(x) = 4(x + 1)^2 + 1 \)[/tex], the vertex [tex]\((h, k)\)[/tex] is [tex]\(( -1, 1 )\)[/tex].
x-intercepts:
The [tex]\( x \)[/tex]-intercepts occur where [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ 4x^2 + 8x + 5 = 0 \][/tex]
We can solve this quadratic equation using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 4 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = 5 \)[/tex]:
[tex]\[ x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 4 \cdot 5}}{2 \cdot 4} = \frac{-8 \pm \sqrt{64 - 80}}{8} = \frac{-8 \pm \sqrt{-16}}{8} = \frac{-8 \pm 4i}{8} = \frac{-2 \pm i}{2} \][/tex]
Since the discriminant ([tex]\( \sqrt{-16} \)[/tex]) is negative, the quadratic equation has no real solutions; hence, there are no real [tex]\( x \)[/tex]-intercepts. Therefore:
[tex]\[ \text{x-intercept: } (x, y) = \text{DNE} \][/tex]
y-intercept:
The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 4(0)^2 + 8(0) + 5 = 5 \][/tex]
So the [tex]\( y \)[/tex]-intercept is:
[tex]\[ \text{y-intercept: } (x, y) = (0, 5) \][/tex]
### (c) Sketch a graph of [tex]\( f \)[/tex]
To sketch the graph of [tex]\( f(x) = 4x^2 + 8x + 5 \)[/tex]:
1. Plot the vertex at [tex]\( (-1, 1) \)[/tex].
2. Plot the y-intercept at [tex]\( (0, 5) \)[/tex].
3. Determine the direction of the parabola:
The coefficient of [tex]\( x^2 \)[/tex] is 4 (which is positive), so the parabola opens upwards.
Here is a rough sketch of the graph:
```plain
y
↑
10 + . .
| . .
5 + . (0,5)
| .
0 +_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| . (−1,1)
−5 + . .
| . .
−10+_____________________________.: x
−10 −5 0 5 10
```
The vertex at [tex]\((-1, 1)\)[/tex] represents the minimum point of the parabola, and the [tex]\(y\)[/tex]-intercept at [tex]\( (0, 5) \)[/tex] shows where the graph crosses the [tex]\( y \)[/tex]-axis. The parabola opens upwards indicating that for very large positive or negative values of [tex]\(x\)[/tex], [tex]\(f(x)\)[/tex] will take very large positive values.
### (a) Express [tex]\( f(x) \)[/tex] in standard form
The standard form (also called vertex form) of a quadratic function is:
[tex]\[ f(x) = a(x - h)^2 + k \][/tex]
where [tex]\((h, k)\)[/tex] is the vertex of the parabola.
The given quadratic function is [tex]\( f(x) = 4x^2 + 8x + 5 \)[/tex].
To convert this to standard form, we can complete the square:
1. Factor out the coefficient of [tex]\( x^2 \)[/tex] from the first two terms:
[tex]\[ f(x) = 4(x^2 + 2x) + 5 \][/tex]
2. Complete the square inside the parentheses:
- Take half of the coefficient of [tex]\( x \)[/tex], which is 2, and square it: [tex]\( \left(\frac{2}{2}\right)^2 = 1 \)[/tex]
- Add and subtract this square inside the parentheses:
[tex]\[ 4(x^2 + 2x + 1 - 1) + 5 = 4((x + 1)^2 - 1) + 5 \][/tex]
3. Distribute the 4 and simplify:
[tex]\[ 4(x + 1)^2 - 4 + 5 = 4(x + 1)^2 + 1 \][/tex]
So the standard (vertex) form of the function is:
[tex]\[ f(x) = 4(x + 1)^2 + 1 \][/tex]
### (b) Find the vertex and [tex]\( x \)[/tex]- and [tex]\( y \)[/tex]-intercepts
Vertex:
From the vertex form [tex]\( f(x) = 4(x + 1)^2 + 1 \)[/tex], the vertex [tex]\((h, k)\)[/tex] is [tex]\(( -1, 1 )\)[/tex].
x-intercepts:
The [tex]\( x \)[/tex]-intercepts occur where [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ 4x^2 + 8x + 5 = 0 \][/tex]
We can solve this quadratic equation using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 4 \)[/tex], [tex]\( b = 8 \)[/tex], and [tex]\( c = 5 \)[/tex]:
[tex]\[ x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 4 \cdot 5}}{2 \cdot 4} = \frac{-8 \pm \sqrt{64 - 80}}{8} = \frac{-8 \pm \sqrt{-16}}{8} = \frac{-8 \pm 4i}{8} = \frac{-2 \pm i}{2} \][/tex]
Since the discriminant ([tex]\( \sqrt{-16} \)[/tex]) is negative, the quadratic equation has no real solutions; hence, there are no real [tex]\( x \)[/tex]-intercepts. Therefore:
[tex]\[ \text{x-intercept: } (x, y) = \text{DNE} \][/tex]
y-intercept:
The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 4(0)^2 + 8(0) + 5 = 5 \][/tex]
So the [tex]\( y \)[/tex]-intercept is:
[tex]\[ \text{y-intercept: } (x, y) = (0, 5) \][/tex]
### (c) Sketch a graph of [tex]\( f \)[/tex]
To sketch the graph of [tex]\( f(x) = 4x^2 + 8x + 5 \)[/tex]:
1. Plot the vertex at [tex]\( (-1, 1) \)[/tex].
2. Plot the y-intercept at [tex]\( (0, 5) \)[/tex].
3. Determine the direction of the parabola:
The coefficient of [tex]\( x^2 \)[/tex] is 4 (which is positive), so the parabola opens upwards.
Here is a rough sketch of the graph:
```plain
y
↑
10 + . .
| . .
5 + . (0,5)
| .
0 +_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| . (−1,1)
−5 + . .
| . .
−10+_____________________________.: x
−10 −5 0 5 10
```
The vertex at [tex]\((-1, 1)\)[/tex] represents the minimum point of the parabola, and the [tex]\(y\)[/tex]-intercept at [tex]\( (0, 5) \)[/tex] shows where the graph crosses the [tex]\( y \)[/tex]-axis. The parabola opens upwards indicating that for very large positive or negative values of [tex]\(x\)[/tex], [tex]\(f(x)\)[/tex] will take very large positive values.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.