Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the value of [tex]\( \sin \left(\frac{3 \pi}{4}\right) \)[/tex], let's take it step by step.
1. Understand the Angle:
- The angle [tex]\( \frac{3\pi}{4} \)[/tex] is in radians. To understand its position on the unit circle, convert it to degrees:
[tex]\[ \frac{3\pi}{4} \times \frac{180^\circ}{\pi} = 135^\circ \][/tex]
- [tex]\( 135^\circ \)[/tex] lies in the second quadrant.
2. Reference Angle:
- The reference angle for [tex]\( 135^\circ \)[/tex] is found by subtracting it from [tex]\( 180^\circ \)[/tex]:
[tex]\[ 180^\circ - 135^\circ = 45^\circ \][/tex]
3. Sine of Reference Angle:
- The sine of [tex]\( 45^\circ \)[/tex] (or [tex]\( \frac{\pi}{4} \)[/tex] radians) is well-known:
[tex]\[ \sin 45^\circ = \frac{\sqrt{2}}{2} \][/tex]
4. Sign in the Second Quadrant:
- In the second quadrant, the sine function is positive.
5. Combine Information:
- Therefore, [tex]\( \sin(135^\circ) \)[/tex] or [tex]\( \sin \left( \frac{3\pi}{4} \right) \)[/tex] is [tex]\( \frac{\sqrt{2}}{2} \)[/tex].
Comparing with the multiple-choice options:
[tex]\[ \sin \left( \frac{3\pi}{4} \right) = \frac{\sqrt{2}}{2} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
1. Understand the Angle:
- The angle [tex]\( \frac{3\pi}{4} \)[/tex] is in radians. To understand its position on the unit circle, convert it to degrees:
[tex]\[ \frac{3\pi}{4} \times \frac{180^\circ}{\pi} = 135^\circ \][/tex]
- [tex]\( 135^\circ \)[/tex] lies in the second quadrant.
2. Reference Angle:
- The reference angle for [tex]\( 135^\circ \)[/tex] is found by subtracting it from [tex]\( 180^\circ \)[/tex]:
[tex]\[ 180^\circ - 135^\circ = 45^\circ \][/tex]
3. Sine of Reference Angle:
- The sine of [tex]\( 45^\circ \)[/tex] (or [tex]\( \frac{\pi}{4} \)[/tex] radians) is well-known:
[tex]\[ \sin 45^\circ = \frac{\sqrt{2}}{2} \][/tex]
4. Sign in the Second Quadrant:
- In the second quadrant, the sine function is positive.
5. Combine Information:
- Therefore, [tex]\( \sin(135^\circ) \)[/tex] or [tex]\( \sin \left( \frac{3\pi}{4} \right) \)[/tex] is [tex]\( \frac{\sqrt{2}}{2} \)[/tex].
Comparing with the multiple-choice options:
[tex]\[ \sin \left( \frac{3\pi}{4} \right) = \frac{\sqrt{2}}{2} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.