Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the value of [tex]\( \sin \left(\frac{3 \pi}{4}\right) \)[/tex], let's take it step by step.
1. Understand the Angle:
- The angle [tex]\( \frac{3\pi}{4} \)[/tex] is in radians. To understand its position on the unit circle, convert it to degrees:
[tex]\[ \frac{3\pi}{4} \times \frac{180^\circ}{\pi} = 135^\circ \][/tex]
- [tex]\( 135^\circ \)[/tex] lies in the second quadrant.
2. Reference Angle:
- The reference angle for [tex]\( 135^\circ \)[/tex] is found by subtracting it from [tex]\( 180^\circ \)[/tex]:
[tex]\[ 180^\circ - 135^\circ = 45^\circ \][/tex]
3. Sine of Reference Angle:
- The sine of [tex]\( 45^\circ \)[/tex] (or [tex]\( \frac{\pi}{4} \)[/tex] radians) is well-known:
[tex]\[ \sin 45^\circ = \frac{\sqrt{2}}{2} \][/tex]
4. Sign in the Second Quadrant:
- In the second quadrant, the sine function is positive.
5. Combine Information:
- Therefore, [tex]\( \sin(135^\circ) \)[/tex] or [tex]\( \sin \left( \frac{3\pi}{4} \right) \)[/tex] is [tex]\( \frac{\sqrt{2}}{2} \)[/tex].
Comparing with the multiple-choice options:
[tex]\[ \sin \left( \frac{3\pi}{4} \right) = \frac{\sqrt{2}}{2} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
1. Understand the Angle:
- The angle [tex]\( \frac{3\pi}{4} \)[/tex] is in radians. To understand its position on the unit circle, convert it to degrees:
[tex]\[ \frac{3\pi}{4} \times \frac{180^\circ}{\pi} = 135^\circ \][/tex]
- [tex]\( 135^\circ \)[/tex] lies in the second quadrant.
2. Reference Angle:
- The reference angle for [tex]\( 135^\circ \)[/tex] is found by subtracting it from [tex]\( 180^\circ \)[/tex]:
[tex]\[ 180^\circ - 135^\circ = 45^\circ \][/tex]
3. Sine of Reference Angle:
- The sine of [tex]\( 45^\circ \)[/tex] (or [tex]\( \frac{\pi}{4} \)[/tex] radians) is well-known:
[tex]\[ \sin 45^\circ = \frac{\sqrt{2}}{2} \][/tex]
4. Sign in the Second Quadrant:
- In the second quadrant, the sine function is positive.
5. Combine Information:
- Therefore, [tex]\( \sin(135^\circ) \)[/tex] or [tex]\( \sin \left( \frac{3\pi}{4} \right) \)[/tex] is [tex]\( \frac{\sqrt{2}}{2} \)[/tex].
Comparing with the multiple-choice options:
[tex]\[ \sin \left( \frac{3\pi}{4} \right) = \frac{\sqrt{2}}{2} \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.