At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine in which quadrant the terminal point determined by [tex]\(\theta\)[/tex] lies, we need to carefully consider the conditions given:
1. [tex]\(\cos \theta < 0\)[/tex]:
- The cosine function is negative in quadrants II and III.
2. [tex]\(\cot \theta > 0\)[/tex]:
- Cotangent is the reciprocal of the tangent function, [tex]\(\cot \theta = \frac{\cos \theta}{\sin \theta}\)[/tex].
- Cotangent is positive when both sine and cosine have the same sign:
- [tex]\(\sin \theta > 0\)[/tex] and [tex]\(\cos \theta > 0\)[/tex], which occurs in quadrant I (but this conflicts with [tex]\(\cos \theta < 0\)[/tex]).
- [tex]\(\sin \theta < 0\)[/tex] and [tex]\(\cos \theta < 0\)[/tex], which occurs in quadrant III.
Given that [tex]\(\cos \theta < 0\)[/tex] forces us to look in quadrants II or III, and [tex]\(\cot \theta > 0\)[/tex] indicates that sine and cosine must share the same sign, the only suitable quadrant satisfying both conditions is quadrant III.
Therefore, the terminal point determined by [tex]\(\theta\)[/tex] is in:
C. quadrant 3
1. [tex]\(\cos \theta < 0\)[/tex]:
- The cosine function is negative in quadrants II and III.
2. [tex]\(\cot \theta > 0\)[/tex]:
- Cotangent is the reciprocal of the tangent function, [tex]\(\cot \theta = \frac{\cos \theta}{\sin \theta}\)[/tex].
- Cotangent is positive when both sine and cosine have the same sign:
- [tex]\(\sin \theta > 0\)[/tex] and [tex]\(\cos \theta > 0\)[/tex], which occurs in quadrant I (but this conflicts with [tex]\(\cos \theta < 0\)[/tex]).
- [tex]\(\sin \theta < 0\)[/tex] and [tex]\(\cos \theta < 0\)[/tex], which occurs in quadrant III.
Given that [tex]\(\cos \theta < 0\)[/tex] forces us to look in quadrants II or III, and [tex]\(\cot \theta > 0\)[/tex] indicates that sine and cosine must share the same sign, the only suitable quadrant satisfying both conditions is quadrant III.
Therefore, the terminal point determined by [tex]\(\theta\)[/tex] is in:
C. quadrant 3
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.