Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine in which quadrant the terminal point determined by [tex]\(\theta\)[/tex] lies, we need to carefully consider the conditions given:
1. [tex]\(\cos \theta < 0\)[/tex]:
- The cosine function is negative in quadrants II and III.
2. [tex]\(\cot \theta > 0\)[/tex]:
- Cotangent is the reciprocal of the tangent function, [tex]\(\cot \theta = \frac{\cos \theta}{\sin \theta}\)[/tex].
- Cotangent is positive when both sine and cosine have the same sign:
- [tex]\(\sin \theta > 0\)[/tex] and [tex]\(\cos \theta > 0\)[/tex], which occurs in quadrant I (but this conflicts with [tex]\(\cos \theta < 0\)[/tex]).
- [tex]\(\sin \theta < 0\)[/tex] and [tex]\(\cos \theta < 0\)[/tex], which occurs in quadrant III.
Given that [tex]\(\cos \theta < 0\)[/tex] forces us to look in quadrants II or III, and [tex]\(\cot \theta > 0\)[/tex] indicates that sine and cosine must share the same sign, the only suitable quadrant satisfying both conditions is quadrant III.
Therefore, the terminal point determined by [tex]\(\theta\)[/tex] is in:
C. quadrant 3
1. [tex]\(\cos \theta < 0\)[/tex]:
- The cosine function is negative in quadrants II and III.
2. [tex]\(\cot \theta > 0\)[/tex]:
- Cotangent is the reciprocal of the tangent function, [tex]\(\cot \theta = \frac{\cos \theta}{\sin \theta}\)[/tex].
- Cotangent is positive when both sine and cosine have the same sign:
- [tex]\(\sin \theta > 0\)[/tex] and [tex]\(\cos \theta > 0\)[/tex], which occurs in quadrant I (but this conflicts with [tex]\(\cos \theta < 0\)[/tex]).
- [tex]\(\sin \theta < 0\)[/tex] and [tex]\(\cos \theta < 0\)[/tex], which occurs in quadrant III.
Given that [tex]\(\cos \theta < 0\)[/tex] forces us to look in quadrants II or III, and [tex]\(\cot \theta > 0\)[/tex] indicates that sine and cosine must share the same sign, the only suitable quadrant satisfying both conditions is quadrant III.
Therefore, the terminal point determined by [tex]\(\theta\)[/tex] is in:
C. quadrant 3
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.