Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the height of the telephone pole given the distance from the pole and the angle of elevation, we can use the tangent function from trigonometry. The tangent of an angle in a right triangle is defined as the ratio of the opposite side (height of the pole) to the adjacent side (distance from the pole).
Given:
- Distance from the pole (adjacent side) = 36 ft
- Angle of elevation = 30°
We need to find the height of the pole (opposite side).
The tangent of the angle is given by:
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Substituting the given values:
[tex]\[ \tan(30^\circ) = \frac{\text{height of the pole}}{36 \text{ ft}} \][/tex]
We know from trigonometry that:
[tex]\[ \tan(30^\circ) = \frac{\sqrt{3}}{3} \][/tex]
Thus,
[tex]\[ \frac{\sqrt{3}}{3} = \frac{\text{height of the pole}}{36 \text{ ft}} \][/tex]
To find the height of the pole, we solve for the opposite side:
[tex]\[ \text{height of the pole} = 36 \text{ ft} \times \frac{\sqrt{3}}{3} \][/tex]
Simplifying this:
[tex]\[ \text{height of the pole} = 36 \times \frac{\sqrt{3}}{3} = 12 \sqrt{3} \text{ ft} \][/tex]
So, the height of the pole is:
[tex]\[ 12 \sqrt{3} \text{ ft} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{12 \sqrt{3} \text{ ft}} \][/tex]
Given:
- Distance from the pole (adjacent side) = 36 ft
- Angle of elevation = 30°
We need to find the height of the pole (opposite side).
The tangent of the angle is given by:
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
Substituting the given values:
[tex]\[ \tan(30^\circ) = \frac{\text{height of the pole}}{36 \text{ ft}} \][/tex]
We know from trigonometry that:
[tex]\[ \tan(30^\circ) = \frac{\sqrt{3}}{3} \][/tex]
Thus,
[tex]\[ \frac{\sqrt{3}}{3} = \frac{\text{height of the pole}}{36 \text{ ft}} \][/tex]
To find the height of the pole, we solve for the opposite side:
[tex]\[ \text{height of the pole} = 36 \text{ ft} \times \frac{\sqrt{3}}{3} \][/tex]
Simplifying this:
[tex]\[ \text{height of the pole} = 36 \times \frac{\sqrt{3}}{3} = 12 \sqrt{3} \text{ ft} \][/tex]
So, the height of the pole is:
[tex]\[ 12 \sqrt{3} \text{ ft} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{12 \sqrt{3} \text{ ft}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.