Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Use transformations of the graph of [tex]\( f(x) = x^2 \)[/tex] to determine the graph of the given function:

[tex]\[ g(x) = (x + 7)^2 \][/tex]

Sagot :

To determine the graph of the given function, [tex]\( g(x) = (x + 7)^2 \)[/tex], using transformations of the basic quadratic function [tex]\( f(x) = x^2 \)[/tex], follow these steps:

1. Identify the basic graph:
The basic function [tex]\( f(x) = x^2 \)[/tex] is a standard parabola that opens upwards with its vertex at the origin [tex]\((0, 0)\)[/tex].

2. Understand the transformation:
The function [tex]\( g(x) = (x + 7)^2 \)[/tex] can be viewed as a transformation of [tex]\( f(x) \)[/tex]. Specifically, it is a horizontal shift.

3. Determine the type of transformation:
- The expression inside the parentheses, [tex]\((x + 7)\)[/tex], indicates a horizontal shift.
- When a function [tex]\( f(x)\)[/tex] is modified to [tex]\( f(x + c) \)[/tex], this represents a shift to the left by [tex]\( c \)[/tex] units if [tex]\( c \)[/tex] is positive.

4. Apply the transformation:
- Since [tex]\( g(x) = (x + 7)^2 \)[/tex], we are shifting the graph of [tex]\( f(x) = x^2 \)[/tex] to the left by 7 units.

5. Describe the resulting graph:
- The graph of [tex]\( g(x) = (x + 7)^2 \)[/tex] is a parabola that opens upwards, similar in shape to the graph of [tex]\( f(x) = x^2 \)[/tex].
- The primary difference is that the vertex of the parabola [tex]\( g(x) = (x + 7)^2 \)[/tex] is shifted leftward by 7 units compared to [tex]\( f(x) = x^2 \)[/tex].
- Therefore, the vertex of [tex]\( g(x) = (x + 7)^2 \)[/tex] is at [tex]\((-7, 0)\)[/tex] instead of [tex]\((0, 0)\)[/tex].

In summary, the graph of [tex]\( g(x) = (x + 7)^2 \)[/tex] is a horizontal translation of the graph of [tex]\( f(x) = x^2 \)[/tex] to the left by 7 units. The shape remains the same, with the vertex of the parabola moving from [tex]\((0, 0)\)[/tex] to [tex]\((-7, 0)\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.