Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the quadratic equation [tex]\(0 = 2x^2 + 3x - 8\)[/tex] and find the positive solution rounded to the nearest hundredth, we'll use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients are:
[tex]\[ a = 2, \quad b = 3, \quad c = -8 \][/tex]
1. Calculate the Discriminant:
The discriminant of a quadratic equation is given by [tex]\( \Delta = b^2 - 4ac \)[/tex].
[tex]\[ \Delta = 3^2 - 4 \cdot 2 \cdot (-8) = 9 + 64 = 73 \][/tex]
2. Calculate the Square Root of the Discriminant:
[tex]\[ \sqrt{73} \approx 8.544 \][/tex]
3. Apply the Quadratic Formula:
Substitute the values into the quadratic formula to find the two solutions:
[tex]\[ x_{1} = \frac{-3 + \sqrt{73}}{2 \cdot 2} = \frac{-3 + 8.544}{4} = \frac{5.544}{4} = 1.386 \][/tex]
[tex]\[ x_{2} = \frac{-3 - \sqrt{73}}{2 \cdot 2} = \frac{-3 - 8.544}{4} = \frac{-11.544}{4} = -2.886 \][/tex]
4. Identify the Positive Solution:
Among the two solutions, the positive solution is [tex]\( x = 1.386 \)[/tex].
5. Round to the Nearest Hundredth:
Rounding [tex]\( 1.386 \)[/tex] to the nearest hundredth, we get [tex]\( 1.39 \)[/tex].
Therefore, the positive solution to the quadratic equation [tex]\(0 = 2x^2 + 3x - 8\)[/tex], rounded to the nearest hundredth, is:
[tex]\[ \boxed{1.39} \][/tex]
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients are:
[tex]\[ a = 2, \quad b = 3, \quad c = -8 \][/tex]
1. Calculate the Discriminant:
The discriminant of a quadratic equation is given by [tex]\( \Delta = b^2 - 4ac \)[/tex].
[tex]\[ \Delta = 3^2 - 4 \cdot 2 \cdot (-8) = 9 + 64 = 73 \][/tex]
2. Calculate the Square Root of the Discriminant:
[tex]\[ \sqrt{73} \approx 8.544 \][/tex]
3. Apply the Quadratic Formula:
Substitute the values into the quadratic formula to find the two solutions:
[tex]\[ x_{1} = \frac{-3 + \sqrt{73}}{2 \cdot 2} = \frac{-3 + 8.544}{4} = \frac{5.544}{4} = 1.386 \][/tex]
[tex]\[ x_{2} = \frac{-3 - \sqrt{73}}{2 \cdot 2} = \frac{-3 - 8.544}{4} = \frac{-11.544}{4} = -2.886 \][/tex]
4. Identify the Positive Solution:
Among the two solutions, the positive solution is [tex]\( x = 1.386 \)[/tex].
5. Round to the Nearest Hundredth:
Rounding [tex]\( 1.386 \)[/tex] to the nearest hundredth, we get [tex]\( 1.39 \)[/tex].
Therefore, the positive solution to the quadratic equation [tex]\(0 = 2x^2 + 3x - 8\)[/tex], rounded to the nearest hundredth, is:
[tex]\[ \boxed{1.39} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.