Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To create the function [tex]\( h(x) = -(x+2)^3 - 4 \)[/tex] from the original function [tex]\( f(x) = x^3 \)[/tex], we need to identify the transformations step-by-step:
1. Horizontal Translation:
The term [tex]\((x + 2)\)[/tex] inside the function indicates a horizontal shift. Since the value [tex]\(+2\)[/tex] appears inside the parentheses, it translates the graph to the left by 2 units (remember that adding a positive number inside the function results in a shift to the left, while adding a negative number would result in a shift to the right).
Therefore, the horizontal translation is 2 units to the left.
2. Reflection:
The negative sign in front of the function [tex]\(-(x + 2)^3\)[/tex] indicates a reflection. Since the negative sign affects the entire function, the reflection is across the x-axis.
Therefore, the reflection is across the x-axis.
3. Vertical Translation:
The [tex]\(-4\)[/tex] at the end of the expression [tex]\(-(x + 2)^3 - 4\)[/tex] indicates a vertical shift. Since it's a negative value, it translates the graph downwards by 4 units.
Therefore, the vertical translation is 4 units down.
So, putting it all together, function [tex]\( f(x) = x^3 \)[/tex] was transformed as follows to create function [tex]\( h(x) = -(x+2)^3 - 4 \)[/tex]:
- Translated 2 units to the left.
- Translated 4 units down.
- Reflected across the x-axis.
1. Horizontal Translation:
The term [tex]\((x + 2)\)[/tex] inside the function indicates a horizontal shift. Since the value [tex]\(+2\)[/tex] appears inside the parentheses, it translates the graph to the left by 2 units (remember that adding a positive number inside the function results in a shift to the left, while adding a negative number would result in a shift to the right).
Therefore, the horizontal translation is 2 units to the left.
2. Reflection:
The negative sign in front of the function [tex]\(-(x + 2)^3\)[/tex] indicates a reflection. Since the negative sign affects the entire function, the reflection is across the x-axis.
Therefore, the reflection is across the x-axis.
3. Vertical Translation:
The [tex]\(-4\)[/tex] at the end of the expression [tex]\(-(x + 2)^3 - 4\)[/tex] indicates a vertical shift. Since it's a negative value, it translates the graph downwards by 4 units.
Therefore, the vertical translation is 4 units down.
So, putting it all together, function [tex]\( f(x) = x^3 \)[/tex] was transformed as follows to create function [tex]\( h(x) = -(x+2)^3 - 4 \)[/tex]:
- Translated 2 units to the left.
- Translated 4 units down.
- Reflected across the x-axis.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.