Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's analyze the quadratic equation given by [tex]\( y = -x^2 - 8x - 11 \)[/tex].
### 1. Finding the Vertex
The vertex of a quadratic equation in the form [tex]\( y = ax^2 + bx + c \)[/tex] can be found using the formulas for [tex]\( h \)[/tex] and [tex]\( k \)[/tex]:
1. [tex]\( h = -\frac{b}{2a} \)[/tex]
2. [tex]\( k = y(h) \)[/tex]
Here, [tex]\( a = -1 \)[/tex], [tex]\( b = -8 \)[/tex], and [tex]\( c = -11 \)[/tex].
Calculating [tex]\( h \)[/tex]:
[tex]\[ h = -\frac{-8}{2 \cdot -1} \][/tex]
[tex]\[ h = \frac{8}{-2} \][/tex]
[tex]\[ h = -4 \][/tex]
Calculating [tex]\( k \)[/tex] by substituting [tex]\( h \)[/tex] back into the equation:
[tex]\[ k = -(-4)^2 - 8(-4) - 11 \][/tex]
[tex]\[ k = -16 + 32 - 11 \][/tex]
[tex]\[ k = 5 \][/tex]
Thus, the vertex of the parabola is at [tex]\( (-4, 5) \)[/tex].
### 2. Finding the Roots
To find the roots (where [tex]\( y = 0 \)[/tex]), we solve the equation [tex]\( -x^2 - 8x - 11 = 0 \)[/tex]. This can be done using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = -1 \)[/tex], [tex]\( b = -8 \)[/tex], and [tex]\( c = -11 \)[/tex].
First, we find the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-8)^2 - 4(-1)(-11) \][/tex]
[tex]\[ \Delta = 64 - 44 \][/tex]
[tex]\[ \Delta = 20 \][/tex]
Since the discriminant is positive, there are two real roots. We can now calculate them:
Root 1:
[tex]\[ x_1 = \frac{-(-8) + \sqrt{20}}{2(-1)} \][/tex]
[tex]\[ x_1 = \frac{8 + \sqrt{20}}{-2} \][/tex]
[tex]\[ x_1 = \frac{8 + 4.472}{-2} \][/tex]
[tex]\[ x_1 = \frac{12.472}{-2} \][/tex]
[tex]\[ x_1 \approx -6.236 \][/tex]
Root 2:
[tex]\[ x_2 = \frac{-(-8) - \sqrt{20}}{2(-1)} \][/tex]
[tex]\[ x_2 = \frac{8 - \sqrt{20}}{-2} \][/tex]
[tex]\[ x_2 = \frac{8 - 4.472}{-2} \][/tex]
[tex]\[ x_2 = \frac{3.528}{-2} \][/tex]
[tex]\[ x_2 \approx -1.764 \][/tex]
Thus, the roots of the quadratic equation are approximately [tex]\( -6.236 \)[/tex] and [tex]\( -1.764 \)[/tex].
### Summary
From our calculations, we have:
- The vertex of the parabola is at [tex]\( (-4, 5) \)[/tex].
- The roots of the parabola are approximately [tex]\( -6.236 \)[/tex] and [tex]\( -1.764 \)[/tex].
These results provide a complete analysis of the given quadratic equation [tex]\( y = -x^2 - 8x - 11 \)[/tex].
### 1. Finding the Vertex
The vertex of a quadratic equation in the form [tex]\( y = ax^2 + bx + c \)[/tex] can be found using the formulas for [tex]\( h \)[/tex] and [tex]\( k \)[/tex]:
1. [tex]\( h = -\frac{b}{2a} \)[/tex]
2. [tex]\( k = y(h) \)[/tex]
Here, [tex]\( a = -1 \)[/tex], [tex]\( b = -8 \)[/tex], and [tex]\( c = -11 \)[/tex].
Calculating [tex]\( h \)[/tex]:
[tex]\[ h = -\frac{-8}{2 \cdot -1} \][/tex]
[tex]\[ h = \frac{8}{-2} \][/tex]
[tex]\[ h = -4 \][/tex]
Calculating [tex]\( k \)[/tex] by substituting [tex]\( h \)[/tex] back into the equation:
[tex]\[ k = -(-4)^2 - 8(-4) - 11 \][/tex]
[tex]\[ k = -16 + 32 - 11 \][/tex]
[tex]\[ k = 5 \][/tex]
Thus, the vertex of the parabola is at [tex]\( (-4, 5) \)[/tex].
### 2. Finding the Roots
To find the roots (where [tex]\( y = 0 \)[/tex]), we solve the equation [tex]\( -x^2 - 8x - 11 = 0 \)[/tex]. This can be done using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = -1 \)[/tex], [tex]\( b = -8 \)[/tex], and [tex]\( c = -11 \)[/tex].
First, we find the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = (-8)^2 - 4(-1)(-11) \][/tex]
[tex]\[ \Delta = 64 - 44 \][/tex]
[tex]\[ \Delta = 20 \][/tex]
Since the discriminant is positive, there are two real roots. We can now calculate them:
Root 1:
[tex]\[ x_1 = \frac{-(-8) + \sqrt{20}}{2(-1)} \][/tex]
[tex]\[ x_1 = \frac{8 + \sqrt{20}}{-2} \][/tex]
[tex]\[ x_1 = \frac{8 + 4.472}{-2} \][/tex]
[tex]\[ x_1 = \frac{12.472}{-2} \][/tex]
[tex]\[ x_1 \approx -6.236 \][/tex]
Root 2:
[tex]\[ x_2 = \frac{-(-8) - \sqrt{20}}{2(-1)} \][/tex]
[tex]\[ x_2 = \frac{8 - \sqrt{20}}{-2} \][/tex]
[tex]\[ x_2 = \frac{8 - 4.472}{-2} \][/tex]
[tex]\[ x_2 = \frac{3.528}{-2} \][/tex]
[tex]\[ x_2 \approx -1.764 \][/tex]
Thus, the roots of the quadratic equation are approximately [tex]\( -6.236 \)[/tex] and [tex]\( -1.764 \)[/tex].
### Summary
From our calculations, we have:
- The vertex of the parabola is at [tex]\( (-4, 5) \)[/tex].
- The roots of the parabola are approximately [tex]\( -6.236 \)[/tex] and [tex]\( -1.764 \)[/tex].
These results provide a complete analysis of the given quadratic equation [tex]\( y = -x^2 - 8x - 11 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.