Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which ordered pairs could be points on a line parallel to a given line with a slope of [tex]\(-\frac{3}{5}\)[/tex], we need to identify pairs of points that yield the same slope when a line is drawn through them.
For each pair of points, we will calculate the slope using the formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's analyze each pair:
1. For the points [tex]\((-8, 8)\)[/tex] and [tex]\((2, 2)\)[/tex]:
[tex]\[ m = \frac{2 - 8}{2 - (-8)} = \frac{-6}{10} = -\frac{3}{5} \][/tex]
This pair has a slope of [tex]\(-\frac{3}{5}\)[/tex], which matches the given slope.
2. For the points [tex]\((-5, -1)\)[/tex] and [tex]\((0, 2)\)[/tex]:
[tex]\[ m = \frac{2 - (-1)}{0 - (-5)} = \frac{3}{5} \][/tex]
This pair has a slope of [tex]\(\frac{3}{5}\)[/tex], which does not match the given slope.
3. For the points [tex]\((-3, 6)\)[/tex] and [tex]\((6, -9)\)[/tex]:
[tex]\[ m = \frac{-9 - 6}{6 - (-3)} = \frac{-15}{9} = -\frac{5}{3} \][/tex]
This pair has a slope of [tex]\(-\frac{5}{3}\)[/tex], which does not match the given slope.
4. For the points [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex]:
[tex]\[ m = \frac{-2 - 1}{3 - (-2)} = \frac{-3}{5} = -\frac{3}{5} \][/tex]
This pair has a slope of [tex]\(-\frac{3}{5}\)[/tex], which matches the given slope.
5. For the points [tex]\((0, 2)\)[/tex] and [tex]\((5, 5)\)[/tex]:
[tex]\[ m = \frac{5 - 2}{5 - 0} = \frac{3}{5} \][/tex]
This pair has a slope of [tex]\(\frac{3}{5}\)[/tex], which does not match the given slope.
After analyzing each pair, the pairs whose slopes match the given slope of [tex]\(-\frac{3}{5}\)[/tex] are:
1. [tex]\((-8, 8)\)[/tex] and [tex]\((2, 2)\)[/tex]
2. [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex]
Therefore, the two options that could be points on a parallel line are:
[tex]\((-8, 8)\)[/tex] and [tex]\((2, 2)\)[/tex], as well as [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex].
For each pair of points, we will calculate the slope using the formula for the slope between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's analyze each pair:
1. For the points [tex]\((-8, 8)\)[/tex] and [tex]\((2, 2)\)[/tex]:
[tex]\[ m = \frac{2 - 8}{2 - (-8)} = \frac{-6}{10} = -\frac{3}{5} \][/tex]
This pair has a slope of [tex]\(-\frac{3}{5}\)[/tex], which matches the given slope.
2. For the points [tex]\((-5, -1)\)[/tex] and [tex]\((0, 2)\)[/tex]:
[tex]\[ m = \frac{2 - (-1)}{0 - (-5)} = \frac{3}{5} \][/tex]
This pair has a slope of [tex]\(\frac{3}{5}\)[/tex], which does not match the given slope.
3. For the points [tex]\((-3, 6)\)[/tex] and [tex]\((6, -9)\)[/tex]:
[tex]\[ m = \frac{-9 - 6}{6 - (-3)} = \frac{-15}{9} = -\frac{5}{3} \][/tex]
This pair has a slope of [tex]\(-\frac{5}{3}\)[/tex], which does not match the given slope.
4. For the points [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex]:
[tex]\[ m = \frac{-2 - 1}{3 - (-2)} = \frac{-3}{5} = -\frac{3}{5} \][/tex]
This pair has a slope of [tex]\(-\frac{3}{5}\)[/tex], which matches the given slope.
5. For the points [tex]\((0, 2)\)[/tex] and [tex]\((5, 5)\)[/tex]:
[tex]\[ m = \frac{5 - 2}{5 - 0} = \frac{3}{5} \][/tex]
This pair has a slope of [tex]\(\frac{3}{5}\)[/tex], which does not match the given slope.
After analyzing each pair, the pairs whose slopes match the given slope of [tex]\(-\frac{3}{5}\)[/tex] are:
1. [tex]\((-8, 8)\)[/tex] and [tex]\((2, 2)\)[/tex]
2. [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex]
Therefore, the two options that could be points on a parallel line are:
[tex]\((-8, 8)\)[/tex] and [tex]\((2, 2)\)[/tex], as well as [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.