At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Alright, let's solve the problem step-by-step.
Mario invested [tex]$\$[/tex]6,000[tex]$ in an account that pays $[/tex]5\%[tex]$ annual interest. We are to determine the value of the account after 2.5 years, using the formula for compound interest: \[ A = P(1 + r)^t \] Here: - \( P \) is the principal amount, which is $[/tex]\[tex]$6,000$[/tex].
- [tex]\( r \)[/tex] is the annual interest rate, which is [tex]$5\%$[/tex], expressed as a decimal: [tex]\( r = 0.05 \)[/tex].
- [tex]\( t \)[/tex] is the time the money is invested, which is 2.5 years.
Now, substituting these values into the formula, we get:
[tex]\[ A = 6000 \times (1 + 0.05)^{2.5} \][/tex]
Calculating the term inside the parentheses first:
[tex]\[ 1 + 0.05 = 1.05 \][/tex]
Next, we raise this to the power of 2.5:
[tex]\[ 1.05^{2.5} \approx 1.317 \][/tex]
Now, multiply this with the principal amount:
[tex]\[ A = 6000 \times 1.317 \approx 7902 \][/tex]
Therefore, the approximate account value after 2.5 years is:
[tex]\[ A \approx 6778.36 \][/tex]
From the given choices, we can compare and see that:
- [tex]$\$[/tex] 5,075[tex]$ - $[/tex]\[tex]$ 5,118$[/tex]
- [tex]$\$[/tex] 5,456[tex]$ - $[/tex]\[tex]$ 5,778$[/tex]
The calculated value, [tex]$\$[/tex] 6778.36[tex]$, does not match any of the given choices precisely, however, it shows us that the closest provided choice would be $[/tex]\[tex]$ 5,778$[/tex]. Thus, Mario's account value after 2.5 years is approximately the closest to [tex]$\$[/tex] 5,778$ from the given options.
Mario invested [tex]$\$[/tex]6,000[tex]$ in an account that pays $[/tex]5\%[tex]$ annual interest. We are to determine the value of the account after 2.5 years, using the formula for compound interest: \[ A = P(1 + r)^t \] Here: - \( P \) is the principal amount, which is $[/tex]\[tex]$6,000$[/tex].
- [tex]\( r \)[/tex] is the annual interest rate, which is [tex]$5\%$[/tex], expressed as a decimal: [tex]\( r = 0.05 \)[/tex].
- [tex]\( t \)[/tex] is the time the money is invested, which is 2.5 years.
Now, substituting these values into the formula, we get:
[tex]\[ A = 6000 \times (1 + 0.05)^{2.5} \][/tex]
Calculating the term inside the parentheses first:
[tex]\[ 1 + 0.05 = 1.05 \][/tex]
Next, we raise this to the power of 2.5:
[tex]\[ 1.05^{2.5} \approx 1.317 \][/tex]
Now, multiply this with the principal amount:
[tex]\[ A = 6000 \times 1.317 \approx 7902 \][/tex]
Therefore, the approximate account value after 2.5 years is:
[tex]\[ A \approx 6778.36 \][/tex]
From the given choices, we can compare and see that:
- [tex]$\$[/tex] 5,075[tex]$ - $[/tex]\[tex]$ 5,118$[/tex]
- [tex]$\$[/tex] 5,456[tex]$ - $[/tex]\[tex]$ 5,778$[/tex]
The calculated value, [tex]$\$[/tex] 6778.36[tex]$, does not match any of the given choices precisely, however, it shows us that the closest provided choice would be $[/tex]\[tex]$ 5,778$[/tex]. Thus, Mario's account value after 2.5 years is approximately the closest to [tex]$\$[/tex] 5,778$ from the given options.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.