Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Select the correct answer.

What is this expression in simplest form?
[tex]\[
\frac{4w}{w-2} + \frac{3w}{w-3}
\][/tex]

A. [tex]\(\frac{7w^2 - 5}{w^2 - 5w + 6}\)[/tex]

B. [tex]\(\frac{7w}{w^2 + 6}\)[/tex]

C. [tex]\(\frac{7w^2 - 18w}{w^2 - 5w + 6}\)[/tex]

D. [tex]\(\frac{7\psi}{2w - 5}\)[/tex]

Sagot :

To simplify the given expression:

[tex]\[ \frac{4w}{w-2} + \frac{3w}{w-3} \][/tex]

we need to find a common denominator and combine the fractions. The common denominator of the two fractions is [tex]\((w - 2)(w - 3)\)[/tex]. First, we rewrite each fraction with the common denominator:

[tex]\[ \frac{4w}{w-2} = \frac{4w(w-3)}{(w-2)(w-3)} \][/tex]
and
[tex]\[ \frac{3w}{w-3} = \frac{3w(w-2)}{(w-2)(w-3)} \][/tex]

Next, we combine the two fractions:

[tex]\[ \frac{4w(w-3) + 3w(w-2)}{(w-2)(w-3)} \][/tex]

We will now distribute within the numerators:

[tex]\[ 4w(w-3) = 4w^2 - 12w \][/tex]
[tex]\[ 3w(w-2) = 3w^2 - 6w \][/tex]

Adding these together:

[tex]\[ 4w^2 - 12w + 3w^2 - 6w = 7w^2 - 18w \][/tex]

So, combining these into one fraction, we have:

[tex]\[ \frac{7w^2 - 18w}{(w-2)(w-3)} \][/tex]

The denominator can be factored as follows:

[tex]\[ (w-2)(w-3) = w^2 - 5w + 6 \][/tex]

Thus, the combined fraction is:

[tex]\[ \frac{7w^2 - 18w}{w^2 - 5w + 6} \][/tex]

Among the provided choices:

A. [tex]\(\frac{7w^2 - 5}{w^2 - 5w + 6}\)[/tex]
B. [tex]\(\frac{7w}{w^2 + 6}\)[/tex]
C. [tex]\(\frac{7w^2 - 18w}{w^2 - 5w + 6}\)[/tex]
D. [tex]\(\frac{7 \psi}{2w - 5}\)[/tex]

Option C, [tex]\(\frac{7w^2 - 18w}{w^2 - 5w + 6}\)[/tex], matches our result.

Therefore, the correct answer is:

C. [tex]\(\frac{7w^2 - 18w}{w^2 - 5w + 6}\)[/tex]