Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which rational function best models the data provided in the table, follow these steps:
1. Extract the Given Data Points:
We have four data points for time [tex]\(x\)[/tex] and corresponding average speed [tex]\(y\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x \text{ (hours)} & \text{Average Speed, } y \text{ (miles per hour)} \\ \hline 12 & 8 \\ \hline 16 & 6 \\ \hline 10 \frac{2}{3} & 9 \\ \hline 18 & 5 \frac{1}{3} \\ \hline \end{array} \][/tex]
Converting the mixed fractions into decimals:
[tex]\[ 10 \frac{2}{3} = 10.67 \quad \text{and} \quad 5 \frac{1}{3} = 5.33 \][/tex]
2. Consider the Candidate Rational Functions:
The two rational functions given are:
[tex]\[ f_1(x) = \frac{x}{96} \][/tex]
[tex]\[ f_2(x) = \frac{2x}{3} \][/tex]
3. Calculate the Predicted Speed Values Using the Functions:
For [tex]\( f_1(x) = \frac{x}{96} \)[/tex]:
[tex]\[ f_1(12) = \frac{12}{96} = 0.125 \][/tex]
[tex]\[ f_1(16) = \frac{16}{96} = 0.1667 \][/tex]
[tex]\[ f_1(10.67) = \frac{10.67}{96} = 0.1111 \][/tex]
[tex]\[ f_1(18) = \frac{18}{96} = 0.1875 \][/tex]
For [tex]\( f_2(x) = \frac{2x}{3} \)[/tex]:
[tex]\[ f_2(12) = \frac{2 \cdot 12}{3} = 8 \][/tex]
[tex]\[ f_2(16) = \frac{2 \cdot 16}{3} = 10.67 \][/tex]
[tex]\[ f_2(10.67) = \frac{2 \cdot 10.67}{3} = 7.11 \][/tex]
[tex]\[ f_2(18) = \frac{2 \cdot 18}{3} = 12 \][/tex]
4. Calculate the Mean Squared Error (MSE) for Each Function:
The MSE is calculated as follows:
[tex]\[ \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \][/tex]
For [tex]\(f_1(x)\)[/tex]:
[tex]\[ \text{MSE}_{f_1} = \frac{1}{4} \left[(8 - 0.125)^2 + (6 - 0.1667)^2 + (9 - 0.1111)^2 + (5.33 - 0.1875)^2\right] \approx 50.38 \][/tex]
For [tex]\(f_2(x)\)[/tex]:
[tex]\[ \text{MSE}_{f_2} = \frac{1}{4} \left[(8 - 8)^2 + (6 - 10.67)^2 + (9 - 7.11)^2 + (5.33 - 12)^2\right] \approx 17.45 \][/tex]
5. Compare the MSE Values:
[tex]\[ \text{MSE}_{f_1} \approx 50.38 \][/tex]
[tex]\[ \text{MSE}_{f_2} \approx 17.45 \][/tex]
Since [tex]\( \text{MSE}_{f_2} \)[/tex] is less than [tex]\( \text{MSE}_{f_1} \)[/tex], the function [tex]\( f_2(x) = \frac{2x}{3} \)[/tex] has a lower mean squared error and thus, better fits the data.
Hence, the rational function [tex]\( y = \frac{2x}{3} \)[/tex] best models the data in the table.
1. Extract the Given Data Points:
We have four data points for time [tex]\(x\)[/tex] and corresponding average speed [tex]\(y\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x \text{ (hours)} & \text{Average Speed, } y \text{ (miles per hour)} \\ \hline 12 & 8 \\ \hline 16 & 6 \\ \hline 10 \frac{2}{3} & 9 \\ \hline 18 & 5 \frac{1}{3} \\ \hline \end{array} \][/tex]
Converting the mixed fractions into decimals:
[tex]\[ 10 \frac{2}{3} = 10.67 \quad \text{and} \quad 5 \frac{1}{3} = 5.33 \][/tex]
2. Consider the Candidate Rational Functions:
The two rational functions given are:
[tex]\[ f_1(x) = \frac{x}{96} \][/tex]
[tex]\[ f_2(x) = \frac{2x}{3} \][/tex]
3. Calculate the Predicted Speed Values Using the Functions:
For [tex]\( f_1(x) = \frac{x}{96} \)[/tex]:
[tex]\[ f_1(12) = \frac{12}{96} = 0.125 \][/tex]
[tex]\[ f_1(16) = \frac{16}{96} = 0.1667 \][/tex]
[tex]\[ f_1(10.67) = \frac{10.67}{96} = 0.1111 \][/tex]
[tex]\[ f_1(18) = \frac{18}{96} = 0.1875 \][/tex]
For [tex]\( f_2(x) = \frac{2x}{3} \)[/tex]:
[tex]\[ f_2(12) = \frac{2 \cdot 12}{3} = 8 \][/tex]
[tex]\[ f_2(16) = \frac{2 \cdot 16}{3} = 10.67 \][/tex]
[tex]\[ f_2(10.67) = \frac{2 \cdot 10.67}{3} = 7.11 \][/tex]
[tex]\[ f_2(18) = \frac{2 \cdot 18}{3} = 12 \][/tex]
4. Calculate the Mean Squared Error (MSE) for Each Function:
The MSE is calculated as follows:
[tex]\[ \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \][/tex]
For [tex]\(f_1(x)\)[/tex]:
[tex]\[ \text{MSE}_{f_1} = \frac{1}{4} \left[(8 - 0.125)^2 + (6 - 0.1667)^2 + (9 - 0.1111)^2 + (5.33 - 0.1875)^2\right] \approx 50.38 \][/tex]
For [tex]\(f_2(x)\)[/tex]:
[tex]\[ \text{MSE}_{f_2} = \frac{1}{4} \left[(8 - 8)^2 + (6 - 10.67)^2 + (9 - 7.11)^2 + (5.33 - 12)^2\right] \approx 17.45 \][/tex]
5. Compare the MSE Values:
[tex]\[ \text{MSE}_{f_1} \approx 50.38 \][/tex]
[tex]\[ \text{MSE}_{f_2} \approx 17.45 \][/tex]
Since [tex]\( \text{MSE}_{f_2} \)[/tex] is less than [tex]\( \text{MSE}_{f_1} \)[/tex], the function [tex]\( f_2(x) = \frac{2x}{3} \)[/tex] has a lower mean squared error and thus, better fits the data.
Hence, the rational function [tex]\( y = \frac{2x}{3} \)[/tex] best models the data in the table.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.