At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which rational function best models the data provided in the table, follow these steps:
1. Extract the Given Data Points:
We have four data points for time [tex]\(x\)[/tex] and corresponding average speed [tex]\(y\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x \text{ (hours)} & \text{Average Speed, } y \text{ (miles per hour)} \\ \hline 12 & 8 \\ \hline 16 & 6 \\ \hline 10 \frac{2}{3} & 9 \\ \hline 18 & 5 \frac{1}{3} \\ \hline \end{array} \][/tex]
Converting the mixed fractions into decimals:
[tex]\[ 10 \frac{2}{3} = 10.67 \quad \text{and} \quad 5 \frac{1}{3} = 5.33 \][/tex]
2. Consider the Candidate Rational Functions:
The two rational functions given are:
[tex]\[ f_1(x) = \frac{x}{96} \][/tex]
[tex]\[ f_2(x) = \frac{2x}{3} \][/tex]
3. Calculate the Predicted Speed Values Using the Functions:
For [tex]\( f_1(x) = \frac{x}{96} \)[/tex]:
[tex]\[ f_1(12) = \frac{12}{96} = 0.125 \][/tex]
[tex]\[ f_1(16) = \frac{16}{96} = 0.1667 \][/tex]
[tex]\[ f_1(10.67) = \frac{10.67}{96} = 0.1111 \][/tex]
[tex]\[ f_1(18) = \frac{18}{96} = 0.1875 \][/tex]
For [tex]\( f_2(x) = \frac{2x}{3} \)[/tex]:
[tex]\[ f_2(12) = \frac{2 \cdot 12}{3} = 8 \][/tex]
[tex]\[ f_2(16) = \frac{2 \cdot 16}{3} = 10.67 \][/tex]
[tex]\[ f_2(10.67) = \frac{2 \cdot 10.67}{3} = 7.11 \][/tex]
[tex]\[ f_2(18) = \frac{2 \cdot 18}{3} = 12 \][/tex]
4. Calculate the Mean Squared Error (MSE) for Each Function:
The MSE is calculated as follows:
[tex]\[ \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \][/tex]
For [tex]\(f_1(x)\)[/tex]:
[tex]\[ \text{MSE}_{f_1} = \frac{1}{4} \left[(8 - 0.125)^2 + (6 - 0.1667)^2 + (9 - 0.1111)^2 + (5.33 - 0.1875)^2\right] \approx 50.38 \][/tex]
For [tex]\(f_2(x)\)[/tex]:
[tex]\[ \text{MSE}_{f_2} = \frac{1}{4} \left[(8 - 8)^2 + (6 - 10.67)^2 + (9 - 7.11)^2 + (5.33 - 12)^2\right] \approx 17.45 \][/tex]
5. Compare the MSE Values:
[tex]\[ \text{MSE}_{f_1} \approx 50.38 \][/tex]
[tex]\[ \text{MSE}_{f_2} \approx 17.45 \][/tex]
Since [tex]\( \text{MSE}_{f_2} \)[/tex] is less than [tex]\( \text{MSE}_{f_1} \)[/tex], the function [tex]\( f_2(x) = \frac{2x}{3} \)[/tex] has a lower mean squared error and thus, better fits the data.
Hence, the rational function [tex]\( y = \frac{2x}{3} \)[/tex] best models the data in the table.
1. Extract the Given Data Points:
We have four data points for time [tex]\(x\)[/tex] and corresponding average speed [tex]\(y\)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline \text{Time, } x \text{ (hours)} & \text{Average Speed, } y \text{ (miles per hour)} \\ \hline 12 & 8 \\ \hline 16 & 6 \\ \hline 10 \frac{2}{3} & 9 \\ \hline 18 & 5 \frac{1}{3} \\ \hline \end{array} \][/tex]
Converting the mixed fractions into decimals:
[tex]\[ 10 \frac{2}{3} = 10.67 \quad \text{and} \quad 5 \frac{1}{3} = 5.33 \][/tex]
2. Consider the Candidate Rational Functions:
The two rational functions given are:
[tex]\[ f_1(x) = \frac{x}{96} \][/tex]
[tex]\[ f_2(x) = \frac{2x}{3} \][/tex]
3. Calculate the Predicted Speed Values Using the Functions:
For [tex]\( f_1(x) = \frac{x}{96} \)[/tex]:
[tex]\[ f_1(12) = \frac{12}{96} = 0.125 \][/tex]
[tex]\[ f_1(16) = \frac{16}{96} = 0.1667 \][/tex]
[tex]\[ f_1(10.67) = \frac{10.67}{96} = 0.1111 \][/tex]
[tex]\[ f_1(18) = \frac{18}{96} = 0.1875 \][/tex]
For [tex]\( f_2(x) = \frac{2x}{3} \)[/tex]:
[tex]\[ f_2(12) = \frac{2 \cdot 12}{3} = 8 \][/tex]
[tex]\[ f_2(16) = \frac{2 \cdot 16}{3} = 10.67 \][/tex]
[tex]\[ f_2(10.67) = \frac{2 \cdot 10.67}{3} = 7.11 \][/tex]
[tex]\[ f_2(18) = \frac{2 \cdot 18}{3} = 12 \][/tex]
4. Calculate the Mean Squared Error (MSE) for Each Function:
The MSE is calculated as follows:
[tex]\[ \text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \][/tex]
For [tex]\(f_1(x)\)[/tex]:
[tex]\[ \text{MSE}_{f_1} = \frac{1}{4} \left[(8 - 0.125)^2 + (6 - 0.1667)^2 + (9 - 0.1111)^2 + (5.33 - 0.1875)^2\right] \approx 50.38 \][/tex]
For [tex]\(f_2(x)\)[/tex]:
[tex]\[ \text{MSE}_{f_2} = \frac{1}{4} \left[(8 - 8)^2 + (6 - 10.67)^2 + (9 - 7.11)^2 + (5.33 - 12)^2\right] \approx 17.45 \][/tex]
5. Compare the MSE Values:
[tex]\[ \text{MSE}_{f_1} \approx 50.38 \][/tex]
[tex]\[ \text{MSE}_{f_2} \approx 17.45 \][/tex]
Since [tex]\( \text{MSE}_{f_2} \)[/tex] is less than [tex]\( \text{MSE}_{f_1} \)[/tex], the function [tex]\( f_2(x) = \frac{2x}{3} \)[/tex] has a lower mean squared error and thus, better fits the data.
Hence, the rational function [tex]\( y = \frac{2x}{3} \)[/tex] best models the data in the table.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.