Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the domain of the function [tex]\( f(x) = \sqrt{3 - x} \)[/tex], we need to ensure that the expression inside the square root is non-negative, as the square root of a negative number is not defined in the realm of real numbers.
Here’s a detailed step-by-step process to find the domain:
1. Identify the Expression Inside the Square Root:
The function is [tex]\( f(x) = \sqrt{3 - x} \)[/tex]. The expression inside the square root is [tex]\( 3 - x \)[/tex].
2. Set Up the Inequality:
To ensure the square root is defined, the expression [tex]\( 3 - x \)[/tex] must be greater than or equal to 0. This gives us the inequality:
[tex]\[ 3 - x \geq 0 \][/tex]
3. Solve the Inequality:
Solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ 3 - x \geq 0 \][/tex]
Subtract 3 from both sides:
[tex]\[ -x \geq -3 \][/tex]
Multiply both sides by -1, remembering to reverse the inequality sign:
[tex]\[ x \leq 3 \][/tex]
4. Determine the Domain:
The inequality [tex]\( x \leq 3 \)[/tex] indicates that [tex]\( x \)[/tex] can take any value less than or equal to 3. Thus, the domain includes all real numbers that are less than or equal to 3.
In set builder notation, the domain can be written as:
[tex]\[ \{ x \mid x \leq 3 \} \][/tex]
In interval notation, the domain is:
[tex]\[ (-\infty, 3] \][/tex]
Therefore, the domain of the function [tex]\( f(x) = \sqrt{3 - x} \)[/tex] is:
[tex]\[ (-\infty, 3] \quad \text{or} \quad \{ x \mid x \leq 3 \} \][/tex]
Here’s a detailed step-by-step process to find the domain:
1. Identify the Expression Inside the Square Root:
The function is [tex]\( f(x) = \sqrt{3 - x} \)[/tex]. The expression inside the square root is [tex]\( 3 - x \)[/tex].
2. Set Up the Inequality:
To ensure the square root is defined, the expression [tex]\( 3 - x \)[/tex] must be greater than or equal to 0. This gives us the inequality:
[tex]\[ 3 - x \geq 0 \][/tex]
3. Solve the Inequality:
Solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ 3 - x \geq 0 \][/tex]
Subtract 3 from both sides:
[tex]\[ -x \geq -3 \][/tex]
Multiply both sides by -1, remembering to reverse the inequality sign:
[tex]\[ x \leq 3 \][/tex]
4. Determine the Domain:
The inequality [tex]\( x \leq 3 \)[/tex] indicates that [tex]\( x \)[/tex] can take any value less than or equal to 3. Thus, the domain includes all real numbers that are less than or equal to 3.
In set builder notation, the domain can be written as:
[tex]\[ \{ x \mid x \leq 3 \} \][/tex]
In interval notation, the domain is:
[tex]\[ (-\infty, 3] \][/tex]
Therefore, the domain of the function [tex]\( f(x) = \sqrt{3 - x} \)[/tex] is:
[tex]\[ (-\infty, 3] \quad \text{or} \quad \{ x \mid x \leq 3 \} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.