Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the Pearson correlation coefficient [tex]\( r \)[/tex] for the given dataset, we can follow these steps:
1. List the data:
- Number of TV commercials [tex]\( x \)[/tex]: 3, 5, 11, 16, 18
- Car sales [tex]\( y \)[/tex] (in hundreds): 3, 2, 9, 7, 8
2. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{3 + 5 + 11 + 16 + 18}{5} = \frac{53}{5} = 10.6 \][/tex]
[tex]\[ \bar{y} = \frac{3 + 2 + 9 + 7 + 8}{5} = \frac{29}{5} = 5.8 \][/tex]
3. Calculate the deviations from the mean:
- For [tex]\( x \)[/tex]:
[tex]\[ x_1 - \bar{x} = 3 - 10.6 = -7.6, \quad x_2 - \bar{x} = 5 - 10.6 = -5.6 \][/tex]
[tex]\[ x_3 - \bar{x} = 11 - 10.6 = 0.4, \quad x_4 - \bar{x} = 16 - 10.6 = 5.4 \][/tex]
[tex]\[ x_5 - \bar{x} = 18 - 10.6 = 7.4 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ y_1 - \bar{y} = 3 - 5.8 = -2.8, \quad y_2 - \bar{y} = 2 - 5.8 = -3.8 \][/tex]
[tex]\[ y_3 - \bar{y} = 9 - 5.8 = 3.2, \quad y_4 - \bar{y} = 7 - 5.8 = 1.2 \][/tex]
[tex]\[ y_5 - \bar{y} = 8 - 5.8 = 2.2 \][/tex]
4. Calculate the products of the deviations:
[tex]\[ (x_1 - \bar{x})(y_1 - \bar{y}) = (-7.6)(-2.8) = 21.28 \][/tex]
[tex]\[ (x_2 - \bar{x})(y_2 - \bar{y}) = (-5.6)(-3.8) = 21.28 \][/tex]
[tex]\[ (x_3 - \bar{x})(y_3 - \bar{y}) = (0.4)(3.2) = 1.28 \][/tex]
[tex]\[ (x_4 - \bar{x})(y_4 - \bar{y}) = (5.4)(1.2) = 6.48 \][/tex]
[tex]\[ (x_5 - \bar{x})(y_5 - \bar{y}) = (7.4)(2.2) = 16.28 \][/tex]
Sum of these products:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = 21.28 + 21.28 + 1.28 + 6.48 + 16.28 = 66.60 \][/tex]
5. Calculate the squared deviations:
- For [tex]\( x \)[/tex]:
[tex]\[ (x_1 - \bar{x})^2 = (-7.6)^2 = 57.76, \quad (x_2 - \bar{x})^2 = (-5.6)^2 = 31.36 \][/tex]
[tex]\[ (x_3 - \bar{x})^2 = (0.4)^2 = 0.16, \quad (x_4 - \bar{x})^2 = (5.4)^2 = 29.16 \][/tex]
[tex]\[ (x_5 - \bar{x})^2 = (7.4)^2 = 54.76 \][/tex]
Sum:
[tex]\[ \sum (x_i - \bar{x})^2 = 57.76 + 31.36 + 0.16 + 29.16 + 54.76 = 173.20 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ (y_1 - \bar{y})^2 = (-2.8)^2 = 7.84, \quad (y_2 - \bar{y})^2 = (-3.8)^2 = 14.44 \][/tex]
[tex]\[ (y_3 - \bar{y})^2 = (3.2)^2 = 10.24, \quad (y_4 - \bar{y})^2 = (1.2)^2 = 1.44 \][/tex]
[tex]\[ (y_5 - \bar{y})^2 = (2.2)^2 = 4.84 \][/tex]
Sum:
[tex]\[ \sum (y_i - \bar{y})^2 = 7.84 + 14.44 + 10.24 + 1.44 + 4.84 = 38.80 \][/tex]
6. Calculate the Pearson correlation coefficient:
[tex]\[ r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} = \frac{66.60}{\sqrt{173.20 \cdot 38.80}} \][/tex]
[tex]\[ r = \frac{66.60}{\sqrt{6720.96}} = \frac{66.60}{81.96} \approx 0.812427 \][/tex]
Rounded to three decimal places:
[tex]\[ r \approx 0.812 \][/tex]
Hence, the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data is [tex]\( \boxed{0.812} \)[/tex].
1. List the data:
- Number of TV commercials [tex]\( x \)[/tex]: 3, 5, 11, 16, 18
- Car sales [tex]\( y \)[/tex] (in hundreds): 3, 2, 9, 7, 8
2. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{3 + 5 + 11 + 16 + 18}{5} = \frac{53}{5} = 10.6 \][/tex]
[tex]\[ \bar{y} = \frac{3 + 2 + 9 + 7 + 8}{5} = \frac{29}{5} = 5.8 \][/tex]
3. Calculate the deviations from the mean:
- For [tex]\( x \)[/tex]:
[tex]\[ x_1 - \bar{x} = 3 - 10.6 = -7.6, \quad x_2 - \bar{x} = 5 - 10.6 = -5.6 \][/tex]
[tex]\[ x_3 - \bar{x} = 11 - 10.6 = 0.4, \quad x_4 - \bar{x} = 16 - 10.6 = 5.4 \][/tex]
[tex]\[ x_5 - \bar{x} = 18 - 10.6 = 7.4 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ y_1 - \bar{y} = 3 - 5.8 = -2.8, \quad y_2 - \bar{y} = 2 - 5.8 = -3.8 \][/tex]
[tex]\[ y_3 - \bar{y} = 9 - 5.8 = 3.2, \quad y_4 - \bar{y} = 7 - 5.8 = 1.2 \][/tex]
[tex]\[ y_5 - \bar{y} = 8 - 5.8 = 2.2 \][/tex]
4. Calculate the products of the deviations:
[tex]\[ (x_1 - \bar{x})(y_1 - \bar{y}) = (-7.6)(-2.8) = 21.28 \][/tex]
[tex]\[ (x_2 - \bar{x})(y_2 - \bar{y}) = (-5.6)(-3.8) = 21.28 \][/tex]
[tex]\[ (x_3 - \bar{x})(y_3 - \bar{y}) = (0.4)(3.2) = 1.28 \][/tex]
[tex]\[ (x_4 - \bar{x})(y_4 - \bar{y}) = (5.4)(1.2) = 6.48 \][/tex]
[tex]\[ (x_5 - \bar{x})(y_5 - \bar{y}) = (7.4)(2.2) = 16.28 \][/tex]
Sum of these products:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = 21.28 + 21.28 + 1.28 + 6.48 + 16.28 = 66.60 \][/tex]
5. Calculate the squared deviations:
- For [tex]\( x \)[/tex]:
[tex]\[ (x_1 - \bar{x})^2 = (-7.6)^2 = 57.76, \quad (x_2 - \bar{x})^2 = (-5.6)^2 = 31.36 \][/tex]
[tex]\[ (x_3 - \bar{x})^2 = (0.4)^2 = 0.16, \quad (x_4 - \bar{x})^2 = (5.4)^2 = 29.16 \][/tex]
[tex]\[ (x_5 - \bar{x})^2 = (7.4)^2 = 54.76 \][/tex]
Sum:
[tex]\[ \sum (x_i - \bar{x})^2 = 57.76 + 31.36 + 0.16 + 29.16 + 54.76 = 173.20 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ (y_1 - \bar{y})^2 = (-2.8)^2 = 7.84, \quad (y_2 - \bar{y})^2 = (-3.8)^2 = 14.44 \][/tex]
[tex]\[ (y_3 - \bar{y})^2 = (3.2)^2 = 10.24, \quad (y_4 - \bar{y})^2 = (1.2)^2 = 1.44 \][/tex]
[tex]\[ (y_5 - \bar{y})^2 = (2.2)^2 = 4.84 \][/tex]
Sum:
[tex]\[ \sum (y_i - \bar{y})^2 = 7.84 + 14.44 + 10.24 + 1.44 + 4.84 = 38.80 \][/tex]
6. Calculate the Pearson correlation coefficient:
[tex]\[ r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} = \frac{66.60}{\sqrt{173.20 \cdot 38.80}} \][/tex]
[tex]\[ r = \frac{66.60}{\sqrt{6720.96}} = \frac{66.60}{81.96} \approx 0.812427 \][/tex]
Rounded to three decimal places:
[tex]\[ r \approx 0.812 \][/tex]
Hence, the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data is [tex]\( \boxed{0.812} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.