Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the Pearson correlation coefficient [tex]\( r \)[/tex] for the given dataset, we can follow these steps:
1. List the data:
- Number of TV commercials [tex]\( x \)[/tex]: 3, 5, 11, 16, 18
- Car sales [tex]\( y \)[/tex] (in hundreds): 3, 2, 9, 7, 8
2. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{3 + 5 + 11 + 16 + 18}{5} = \frac{53}{5} = 10.6 \][/tex]
[tex]\[ \bar{y} = \frac{3 + 2 + 9 + 7 + 8}{5} = \frac{29}{5} = 5.8 \][/tex]
3. Calculate the deviations from the mean:
- For [tex]\( x \)[/tex]:
[tex]\[ x_1 - \bar{x} = 3 - 10.6 = -7.6, \quad x_2 - \bar{x} = 5 - 10.6 = -5.6 \][/tex]
[tex]\[ x_3 - \bar{x} = 11 - 10.6 = 0.4, \quad x_4 - \bar{x} = 16 - 10.6 = 5.4 \][/tex]
[tex]\[ x_5 - \bar{x} = 18 - 10.6 = 7.4 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ y_1 - \bar{y} = 3 - 5.8 = -2.8, \quad y_2 - \bar{y} = 2 - 5.8 = -3.8 \][/tex]
[tex]\[ y_3 - \bar{y} = 9 - 5.8 = 3.2, \quad y_4 - \bar{y} = 7 - 5.8 = 1.2 \][/tex]
[tex]\[ y_5 - \bar{y} = 8 - 5.8 = 2.2 \][/tex]
4. Calculate the products of the deviations:
[tex]\[ (x_1 - \bar{x})(y_1 - \bar{y}) = (-7.6)(-2.8) = 21.28 \][/tex]
[tex]\[ (x_2 - \bar{x})(y_2 - \bar{y}) = (-5.6)(-3.8) = 21.28 \][/tex]
[tex]\[ (x_3 - \bar{x})(y_3 - \bar{y}) = (0.4)(3.2) = 1.28 \][/tex]
[tex]\[ (x_4 - \bar{x})(y_4 - \bar{y}) = (5.4)(1.2) = 6.48 \][/tex]
[tex]\[ (x_5 - \bar{x})(y_5 - \bar{y}) = (7.4)(2.2) = 16.28 \][/tex]
Sum of these products:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = 21.28 + 21.28 + 1.28 + 6.48 + 16.28 = 66.60 \][/tex]
5. Calculate the squared deviations:
- For [tex]\( x \)[/tex]:
[tex]\[ (x_1 - \bar{x})^2 = (-7.6)^2 = 57.76, \quad (x_2 - \bar{x})^2 = (-5.6)^2 = 31.36 \][/tex]
[tex]\[ (x_3 - \bar{x})^2 = (0.4)^2 = 0.16, \quad (x_4 - \bar{x})^2 = (5.4)^2 = 29.16 \][/tex]
[tex]\[ (x_5 - \bar{x})^2 = (7.4)^2 = 54.76 \][/tex]
Sum:
[tex]\[ \sum (x_i - \bar{x})^2 = 57.76 + 31.36 + 0.16 + 29.16 + 54.76 = 173.20 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ (y_1 - \bar{y})^2 = (-2.8)^2 = 7.84, \quad (y_2 - \bar{y})^2 = (-3.8)^2 = 14.44 \][/tex]
[tex]\[ (y_3 - \bar{y})^2 = (3.2)^2 = 10.24, \quad (y_4 - \bar{y})^2 = (1.2)^2 = 1.44 \][/tex]
[tex]\[ (y_5 - \bar{y})^2 = (2.2)^2 = 4.84 \][/tex]
Sum:
[tex]\[ \sum (y_i - \bar{y})^2 = 7.84 + 14.44 + 10.24 + 1.44 + 4.84 = 38.80 \][/tex]
6. Calculate the Pearson correlation coefficient:
[tex]\[ r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} = \frac{66.60}{\sqrt{173.20 \cdot 38.80}} \][/tex]
[tex]\[ r = \frac{66.60}{\sqrt{6720.96}} = \frac{66.60}{81.96} \approx 0.812427 \][/tex]
Rounded to three decimal places:
[tex]\[ r \approx 0.812 \][/tex]
Hence, the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data is [tex]\( \boxed{0.812} \)[/tex].
1. List the data:
- Number of TV commercials [tex]\( x \)[/tex]: 3, 5, 11, 16, 18
- Car sales [tex]\( y \)[/tex] (in hundreds): 3, 2, 9, 7, 8
2. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{3 + 5 + 11 + 16 + 18}{5} = \frac{53}{5} = 10.6 \][/tex]
[tex]\[ \bar{y} = \frac{3 + 2 + 9 + 7 + 8}{5} = \frac{29}{5} = 5.8 \][/tex]
3. Calculate the deviations from the mean:
- For [tex]\( x \)[/tex]:
[tex]\[ x_1 - \bar{x} = 3 - 10.6 = -7.6, \quad x_2 - \bar{x} = 5 - 10.6 = -5.6 \][/tex]
[tex]\[ x_3 - \bar{x} = 11 - 10.6 = 0.4, \quad x_4 - \bar{x} = 16 - 10.6 = 5.4 \][/tex]
[tex]\[ x_5 - \bar{x} = 18 - 10.6 = 7.4 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ y_1 - \bar{y} = 3 - 5.8 = -2.8, \quad y_2 - \bar{y} = 2 - 5.8 = -3.8 \][/tex]
[tex]\[ y_3 - \bar{y} = 9 - 5.8 = 3.2, \quad y_4 - \bar{y} = 7 - 5.8 = 1.2 \][/tex]
[tex]\[ y_5 - \bar{y} = 8 - 5.8 = 2.2 \][/tex]
4. Calculate the products of the deviations:
[tex]\[ (x_1 - \bar{x})(y_1 - \bar{y}) = (-7.6)(-2.8) = 21.28 \][/tex]
[tex]\[ (x_2 - \bar{x})(y_2 - \bar{y}) = (-5.6)(-3.8) = 21.28 \][/tex]
[tex]\[ (x_3 - \bar{x})(y_3 - \bar{y}) = (0.4)(3.2) = 1.28 \][/tex]
[tex]\[ (x_4 - \bar{x})(y_4 - \bar{y}) = (5.4)(1.2) = 6.48 \][/tex]
[tex]\[ (x_5 - \bar{x})(y_5 - \bar{y}) = (7.4)(2.2) = 16.28 \][/tex]
Sum of these products:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = 21.28 + 21.28 + 1.28 + 6.48 + 16.28 = 66.60 \][/tex]
5. Calculate the squared deviations:
- For [tex]\( x \)[/tex]:
[tex]\[ (x_1 - \bar{x})^2 = (-7.6)^2 = 57.76, \quad (x_2 - \bar{x})^2 = (-5.6)^2 = 31.36 \][/tex]
[tex]\[ (x_3 - \bar{x})^2 = (0.4)^2 = 0.16, \quad (x_4 - \bar{x})^2 = (5.4)^2 = 29.16 \][/tex]
[tex]\[ (x_5 - \bar{x})^2 = (7.4)^2 = 54.76 \][/tex]
Sum:
[tex]\[ \sum (x_i - \bar{x})^2 = 57.76 + 31.36 + 0.16 + 29.16 + 54.76 = 173.20 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ (y_1 - \bar{y})^2 = (-2.8)^2 = 7.84, \quad (y_2 - \bar{y})^2 = (-3.8)^2 = 14.44 \][/tex]
[tex]\[ (y_3 - \bar{y})^2 = (3.2)^2 = 10.24, \quad (y_4 - \bar{y})^2 = (1.2)^2 = 1.44 \][/tex]
[tex]\[ (y_5 - \bar{y})^2 = (2.2)^2 = 4.84 \][/tex]
Sum:
[tex]\[ \sum (y_i - \bar{y})^2 = 7.84 + 14.44 + 10.24 + 1.44 + 4.84 = 38.80 \][/tex]
6. Calculate the Pearson correlation coefficient:
[tex]\[ r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} = \frac{66.60}{\sqrt{173.20 \cdot 38.80}} \][/tex]
[tex]\[ r = \frac{66.60}{\sqrt{6720.96}} = \frac{66.60}{81.96} \approx 0.812427 \][/tex]
Rounded to three decimal places:
[tex]\[ r \approx 0.812 \][/tex]
Hence, the Pearson correlation coefficient [tex]\( r \)[/tex] for the given data is [tex]\( \boxed{0.812} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.