Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the domain of the function [tex]\( f(x) = 2x^2 + 5 \sqrt{x+2} \)[/tex], we need to identify all values of [tex]\( x \)[/tex] for which the function is defined. This involves considering each part of the function separately and then finding the common values of [tex]\( x \)[/tex] that satisfy all conditions.
### Step-by-Step Solution:
1. Quadratic Term:
[tex]\[ 2x^2 \][/tex]
The term [tex]\( 2x^2 \)[/tex] is defined for all real numbers since the square of any real number is a non-negative real number, and multiplying by 2 will not change the domain.
2. Square Root Term:
[tex]\[ 5 \sqrt{x+2} \][/tex]
The term [tex]\( 5 \sqrt{x+2} \)[/tex] involves a square root, which is only defined for non-negative arguments (inside the square root).
3. Finding the Non-negative Condition:
We need the expression inside the square root to be non-negative:
[tex]\[ x + 2 \geq 0 \][/tex]
To solve this inequality, isolate [tex]\( x \)[/tex]:
[tex]\[ x \geq -2 \][/tex]
This tells us that [tex]\( x \)[/tex] must be greater than or equal to [tex]\(-2\)[/tex] for the square root term to be defined.
### Conclusion:
Combining our results, the quadratic term [tex]\( 2x^2 \)[/tex] is defined for all real numbers, and the square root term [tex]\( \sqrt{x+2} \)[/tex] is defined for [tex]\( x \geq -2 \)[/tex]. Therefore, the domain of the function [tex]\( f(x) \)[/tex] is all real numbers [tex]\( x \)[/tex] such that [tex]\( x \geq -2 \)[/tex].
The completed statement is:
The domain for [tex]\( f(x) \)[/tex] is all real numbers greater than or equal to [tex]\(-2\)[/tex].
### Step-by-Step Solution:
1. Quadratic Term:
[tex]\[ 2x^2 \][/tex]
The term [tex]\( 2x^2 \)[/tex] is defined for all real numbers since the square of any real number is a non-negative real number, and multiplying by 2 will not change the domain.
2. Square Root Term:
[tex]\[ 5 \sqrt{x+2} \][/tex]
The term [tex]\( 5 \sqrt{x+2} \)[/tex] involves a square root, which is only defined for non-negative arguments (inside the square root).
3. Finding the Non-negative Condition:
We need the expression inside the square root to be non-negative:
[tex]\[ x + 2 \geq 0 \][/tex]
To solve this inequality, isolate [tex]\( x \)[/tex]:
[tex]\[ x \geq -2 \][/tex]
This tells us that [tex]\( x \)[/tex] must be greater than or equal to [tex]\(-2\)[/tex] for the square root term to be defined.
### Conclusion:
Combining our results, the quadratic term [tex]\( 2x^2 \)[/tex] is defined for all real numbers, and the square root term [tex]\( \sqrt{x+2} \)[/tex] is defined for [tex]\( x \geq -2 \)[/tex]. Therefore, the domain of the function [tex]\( f(x) \)[/tex] is all real numbers [tex]\( x \)[/tex] such that [tex]\( x \geq -2 \)[/tex].
The completed statement is:
The domain for [tex]\( f(x) \)[/tex] is all real numbers greater than or equal to [tex]\(-2\)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.