Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the equation [tex]\(8^y = 16^{y+2}\)[/tex], let's follow these steps:
1. Express both bases as powers of 2:
- 8 can be written as [tex]\(2^3\)[/tex], so [tex]\(8^y\)[/tex] can be written as [tex]\((2^3)^y\)[/tex] which simplifies to [tex]\(2^{3y}\)[/tex].
- 16 can be written as [tex]\(2^4\)[/tex], so [tex]\(16^{y+2}\)[/tex] can be written as [tex]\((2^4)^{y+2}\)[/tex] which simplifies to [tex]\(2^{4(y+2)}\)[/tex].
2. Rewrite the equation with these expressions:
[tex]\[ 8^y = 16^{y+2} \implies 2^{3y} = 2^{4(y+2)} \][/tex]
3. Set the exponents equal to each other since the bases are the same:
[tex]\[ 3y = 4(y + 2) \][/tex]
4. Solve for [tex]\( y \)[/tex]:
- Distribute the 4 on the right-hand side:
[tex]\[ 3y = 4y + 8 \][/tex]
- To isolate [tex]\( y \)[/tex], subtract [tex]\( 4y \)[/tex] from both sides:
[tex]\[ 3y - 4y = 8 \implies -y = 8 \][/tex]
- Divide both sides by -1:
[tex]\[ y = -8 \][/tex]
So, the value of [tex]\( y \)[/tex] is [tex]\(-8\)[/tex]. Thus, the correct answer is:
[tex]\[ \boxed{-8} \][/tex]
1. Express both bases as powers of 2:
- 8 can be written as [tex]\(2^3\)[/tex], so [tex]\(8^y\)[/tex] can be written as [tex]\((2^3)^y\)[/tex] which simplifies to [tex]\(2^{3y}\)[/tex].
- 16 can be written as [tex]\(2^4\)[/tex], so [tex]\(16^{y+2}\)[/tex] can be written as [tex]\((2^4)^{y+2}\)[/tex] which simplifies to [tex]\(2^{4(y+2)}\)[/tex].
2. Rewrite the equation with these expressions:
[tex]\[ 8^y = 16^{y+2} \implies 2^{3y} = 2^{4(y+2)} \][/tex]
3. Set the exponents equal to each other since the bases are the same:
[tex]\[ 3y = 4(y + 2) \][/tex]
4. Solve for [tex]\( y \)[/tex]:
- Distribute the 4 on the right-hand side:
[tex]\[ 3y = 4y + 8 \][/tex]
- To isolate [tex]\( y \)[/tex], subtract [tex]\( 4y \)[/tex] from both sides:
[tex]\[ 3y - 4y = 8 \implies -y = 8 \][/tex]
- Divide both sides by -1:
[tex]\[ y = -8 \][/tex]
So, the value of [tex]\( y \)[/tex] is [tex]\(-8\)[/tex]. Thus, the correct answer is:
[tex]\[ \boxed{-8} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.