Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Determine the amplitude, period, and phase shift of the following trigonometric equation:

[tex]\[ y = \frac{-3}{2} \cos (x) \][/tex]

Answer:

Amplitude: [tex]\(\square\)[/tex]

Period: [tex]\(\square\)[/tex]

Phase Shift:
- No phase shift
- Shifted to the right
- Shifted to the left

Sagot :

To determine the amplitude, period, and phase shift of the trigonometric equation [tex]\( y = \frac{-3}{2} \cos (x) \)[/tex], let's analyze each component step-by-step.

1. Amplitude:
The amplitude of a cosine function of the form [tex]\( y = A \cos (kx + \phi) \)[/tex] is given by the absolute value of the coefficient [tex]\( A \)[/tex] before the cosine function. In this equation, the coefficient of [tex]\( \cos (x) \)[/tex] is [tex]\( -\frac{3}{2} \)[/tex]. The amplitude is therefore:
[tex]\[ \text{Amplitude} = \left| -\frac{3}{2} \right| = \frac{3}{2} = 1.5 \][/tex]

2. Period:
The period of a cosine function [tex]\( y = A \cos (kx + \phi) \)[/tex] is calculated using the formula:
[tex]\[ \text{Period} = \frac{2\pi}{k} \][/tex]
In the given equation, the value of [tex]\( k \)[/tex] in [tex]\( \cos (x) \)[/tex] is 1. Substituting [tex]\( k = 1 \)[/tex]:
[tex]\[ \text{Period} = \frac{2\pi}{1} = 2\pi \approx 6.283185307179586 \][/tex]

3. Phase Shift:
The phase shift of a cosine function [tex]\( y = A \cos (kx + \phi) \)[/tex] is determined by the term [tex]\( \phi \)[/tex]. In the equation [tex]\( y = \frac{-3}{2} \cos (x) \)[/tex], there is no additional [tex]\( \phi \)[/tex] term (i.e., the equation is [tex]\( \cos(x + 0) \)[/tex]). This means there is no horizontal shift in the cosine function. Hence:
[tex]\[ \text{Phase Shift} = \text{no phase shift} \][/tex]

In summary, for the equation [tex]\( y = \frac{-3}{2} \cos (x) \)[/tex]:

- Amplitude: [tex]\( 1.5 \)[/tex]
- Period: [tex]\( 6.283185307179586 \)[/tex]
- Phase Shift: no phase shift
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.