At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Here is the formatted version of the given mathematical expression:

[tex]\[ f(x) = \frac{3x^2 - 5}{x + 1} \][/tex]

Please verify if this meets your requirements.

Sagot :

To find the horizontal asymptote of the function [tex]\( f(x) = \frac{3x^2 - 5}{x + 1} \)[/tex], we need to analyze its behavior as [tex]\( x \)[/tex] approaches infinity ([tex]\( x \to \infty \)[/tex]).

### Step-by-Step Solution:

1. Identify the function:

[tex]\[ f(x) = \frac{3x^2 - 5}{x + 1} \][/tex]

2. Understand the concept of horizontal asymptotes:
Horizontal asymptotes occur when [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] or [tex]\(-\infty\)[/tex] and provide a value that the function approaches. We are particularly interested in the behavior as [tex]\( x \to \infty \)[/tex].

3. Consider the behavior as [tex]\( x \to \infty \)[/tex]:
To find the horizontal asymptote, we take the limit of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex]:

[tex]\[ \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{3x^2 - 5}{x + 1} \][/tex]

4. Simplify the expression within the limit:

When [tex]\( x \to \infty \)[/tex], the highest degree terms in the numerator and denominator dominate the behavior of the function:

[tex]\[ \lim_{x \to \infty} \frac{3x^2 - 5}{x + 1} = \lim_{x \to \infty} \frac{3x^2}{x + 1} \approx \lim_{x \to \infty} \frac{3x^2}{x} \quad (\text{for large } x) \][/tex]

5. Divide numerator and denominator by [tex]\( x \)[/tex]:

Simplify by dividing the numerator and the denominator by [tex]\( x \)[/tex]:

[tex]\[ \lim_{x \to \infty} \frac{3x^2 / x}{(x + 1) / x} = \lim_{x \to \infty} \frac{3x}{1 + \frac{1}{x}} \][/tex]

6. Evaluate the simplified limit:

As [tex]\( x \to \infty \)[/tex], the term [tex]\(\frac{1}{x}\)[/tex] approaches 0:

[tex]\[ \lim_{x \to \infty} \frac{3x}{1 + \frac{1}{x}} = \lim_{x \to \infty} \frac{3x}{1 + 0} = \lim_{x \to \infty} 3x \][/tex]

Since [tex]\( 3x \)[/tex] grows without bound as [tex]\( x \to \infty \)[/tex]:

[tex]\[ \lim_{x \to \infty} 3x = \infty \][/tex]

Thus, the function [tex]\( f(x) = \frac{3x^2 - 5}{x + 1} \)[/tex] does not approach a finite value but instead increases without bound as [tex]\( x \to \infty \)[/tex].

### Conclusion:
The horizontal asymptote is:
[tex]\[ \lim_{x \to \infty} f(x) = \infty \][/tex]

Therefore, [tex]\( f(x) \to \infty \)[/tex] as [tex]\( x \to \infty \)[/tex], indicating that there is no finite horizontal asymptote but rather the function increases indefinitely.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.