Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which line represents the linear equation [tex]\( -3y = 15 - 4x \)[/tex], we first need to rewrite the equation in slope-intercept form, which is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
1. Start with the original equation:
[tex]\[ -3y = 15 - 4x \][/tex]
2. Rearrange the equation to solve for [tex]\( y \)[/tex]. First, isolate [tex]\( y \)[/tex] by dividing every term by -3:
[tex]\[ y = \frac{-4x + 15}{-3} \][/tex]
Simplify the right-hand side:
[tex]\[ y = \frac{4}{3}x - 5 \][/tex]
So, the equation in slope-intercept form is:
[tex]\[ y = \frac{4}{3}x - 5 \][/tex]
3. From the slope-intercept form [tex]\( y = \frac{4}{3}x - 5 \)[/tex], we can identify the slope [tex]\( m \)[/tex] and the y-intercept [tex]\( b \)[/tex]:
- The slope [tex]\( m \)[/tex] is [tex]\(\frac{4}{3} \)[/tex]
- The y-intercept [tex]\( b \)[/tex] is [tex]\(-5\)[/tex]
Hence, the equation [tex]\( -3y = 15 - 4x \)[/tex] rewritten in slope-intercept form is [tex]\( y = \frac{4}{3}x - 5 \)[/tex]. The [tex]\( y \)[/tex]-intercept is [tex]\(-5\)[/tex], and the slope of the line is [tex]\( \frac{4}{3} \)[/tex].
To determine which line represents this equation, we need a line that has the slope [tex]\( \frac{4}{3} \)[/tex] and y-intercept [tex]\(-5\)[/tex]. This will typically be given in a graphical or multiple-choice format, so without specific options, we identify the line with these properties.
1. Start with the original equation:
[tex]\[ -3y = 15 - 4x \][/tex]
2. Rearrange the equation to solve for [tex]\( y \)[/tex]. First, isolate [tex]\( y \)[/tex] by dividing every term by -3:
[tex]\[ y = \frac{-4x + 15}{-3} \][/tex]
Simplify the right-hand side:
[tex]\[ y = \frac{4}{3}x - 5 \][/tex]
So, the equation in slope-intercept form is:
[tex]\[ y = \frac{4}{3}x - 5 \][/tex]
3. From the slope-intercept form [tex]\( y = \frac{4}{3}x - 5 \)[/tex], we can identify the slope [tex]\( m \)[/tex] and the y-intercept [tex]\( b \)[/tex]:
- The slope [tex]\( m \)[/tex] is [tex]\(\frac{4}{3} \)[/tex]
- The y-intercept [tex]\( b \)[/tex] is [tex]\(-5\)[/tex]
Hence, the equation [tex]\( -3y = 15 - 4x \)[/tex] rewritten in slope-intercept form is [tex]\( y = \frac{4}{3}x - 5 \)[/tex]. The [tex]\( y \)[/tex]-intercept is [tex]\(-5\)[/tex], and the slope of the line is [tex]\( \frac{4}{3} \)[/tex].
To determine which line represents this equation, we need a line that has the slope [tex]\( \frac{4}{3} \)[/tex] and y-intercept [tex]\(-5\)[/tex]. This will typically be given in a graphical or multiple-choice format, so without specific options, we identify the line with these properties.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.