Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's calculate the variance step-by-step with the given data.
1. Given Data:
- Monthly Rainfall (in inches): [tex]\(1.8, 2.5, 2.6, 4.4, 4.4, 7.3, 8.0, 9.5, 10.3, 10.4, 11.1, 11.7\)[/tex]
- Mean ([tex]\(\mu\)[/tex]): [tex]\(7\)[/tex]
- Number of observations ([tex]\(N\)[/tex]): [tex]\(12\)[/tex]
2. Variance Formula:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N} \][/tex]
3. Calculate each squared difference [tex]\((x_i - \mu)^2\)[/tex]:
- [tex]\((1.8 - 7)^2 = 27.04\)[/tex]
- [tex]\((2.5 - 7)^2 = 20.25\)[/tex]
- [tex]\((2.6 - 7)^2 = 19.36\)[/tex]
- [tex]\((4.4 - 7)^2 = 6.76\)[/tex]
- [tex]\((4.4 - 7)^2 = 6.76\)[/tex]
- [tex]\((7.3 - 7)^2 = 0.09\)[/tex]
- [tex]\((8.0 - 7)^2 = 1.00\)[/tex]
- [tex]\((9.5 - 7)^2 = 6.25\)[/tex]
- [tex]\((10.3 - 7)^2 = 10.89\)[/tex]
- [tex]\((10.4 - 7)^2 = 11.56\)[/tex]
- [tex]\((11.1 - 7)^2 = 16.81\)[/tex]
- [tex]\((11.7 - 7)^2 = 22.09\)[/tex]
4. Summing the squared differences:
[tex]\[ 27.04 + 20.25 + 19.36 + 6.76 + 6.76 + 0.09 + 1.00 + 6.25 + 10.89 + 11.56 + 16.81 + 22.09 = 148.86 \][/tex]
5. Calculate the variance [tex]\(\sigma^2\)[/tex]:
[tex]\[ \sigma^2 = \frac{148.86}{12} = 12.405 \][/tex]
So, the variance is [tex]\( \sigma^2 = 12.405 \)[/tex]. The missing values in the formula are [tex]\( 148.86 \)[/tex] for the sum of squared differences and [tex]\( 12.405 \)[/tex] for the variance. Therefore, the correct variance is:
[tex]\[ \sigma^2 = 12.405 \][/tex]
1. Given Data:
- Monthly Rainfall (in inches): [tex]\(1.8, 2.5, 2.6, 4.4, 4.4, 7.3, 8.0, 9.5, 10.3, 10.4, 11.1, 11.7\)[/tex]
- Mean ([tex]\(\mu\)[/tex]): [tex]\(7\)[/tex]
- Number of observations ([tex]\(N\)[/tex]): [tex]\(12\)[/tex]
2. Variance Formula:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N} \][/tex]
3. Calculate each squared difference [tex]\((x_i - \mu)^2\)[/tex]:
- [tex]\((1.8 - 7)^2 = 27.04\)[/tex]
- [tex]\((2.5 - 7)^2 = 20.25\)[/tex]
- [tex]\((2.6 - 7)^2 = 19.36\)[/tex]
- [tex]\((4.4 - 7)^2 = 6.76\)[/tex]
- [tex]\((4.4 - 7)^2 = 6.76\)[/tex]
- [tex]\((7.3 - 7)^2 = 0.09\)[/tex]
- [tex]\((8.0 - 7)^2 = 1.00\)[/tex]
- [tex]\((9.5 - 7)^2 = 6.25\)[/tex]
- [tex]\((10.3 - 7)^2 = 10.89\)[/tex]
- [tex]\((10.4 - 7)^2 = 11.56\)[/tex]
- [tex]\((11.1 - 7)^2 = 16.81\)[/tex]
- [tex]\((11.7 - 7)^2 = 22.09\)[/tex]
4. Summing the squared differences:
[tex]\[ 27.04 + 20.25 + 19.36 + 6.76 + 6.76 + 0.09 + 1.00 + 6.25 + 10.89 + 11.56 + 16.81 + 22.09 = 148.86 \][/tex]
5. Calculate the variance [tex]\(\sigma^2\)[/tex]:
[tex]\[ \sigma^2 = \frac{148.86}{12} = 12.405 \][/tex]
So, the variance is [tex]\( \sigma^2 = 12.405 \)[/tex]. The missing values in the formula are [tex]\( 148.86 \)[/tex] for the sum of squared differences and [tex]\( 12.405 \)[/tex] for the variance. Therefore, the correct variance is:
[tex]\[ \sigma^2 = 12.405 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.