Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's calculate the variance step-by-step with the given data.
1. Given Data:
- Monthly Rainfall (in inches): [tex]\(1.8, 2.5, 2.6, 4.4, 4.4, 7.3, 8.0, 9.5, 10.3, 10.4, 11.1, 11.7\)[/tex]
- Mean ([tex]\(\mu\)[/tex]): [tex]\(7\)[/tex]
- Number of observations ([tex]\(N\)[/tex]): [tex]\(12\)[/tex]
2. Variance Formula:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N} \][/tex]
3. Calculate each squared difference [tex]\((x_i - \mu)^2\)[/tex]:
- [tex]\((1.8 - 7)^2 = 27.04\)[/tex]
- [tex]\((2.5 - 7)^2 = 20.25\)[/tex]
- [tex]\((2.6 - 7)^2 = 19.36\)[/tex]
- [tex]\((4.4 - 7)^2 = 6.76\)[/tex]
- [tex]\((4.4 - 7)^2 = 6.76\)[/tex]
- [tex]\((7.3 - 7)^2 = 0.09\)[/tex]
- [tex]\((8.0 - 7)^2 = 1.00\)[/tex]
- [tex]\((9.5 - 7)^2 = 6.25\)[/tex]
- [tex]\((10.3 - 7)^2 = 10.89\)[/tex]
- [tex]\((10.4 - 7)^2 = 11.56\)[/tex]
- [tex]\((11.1 - 7)^2 = 16.81\)[/tex]
- [tex]\((11.7 - 7)^2 = 22.09\)[/tex]
4. Summing the squared differences:
[tex]\[ 27.04 + 20.25 + 19.36 + 6.76 + 6.76 + 0.09 + 1.00 + 6.25 + 10.89 + 11.56 + 16.81 + 22.09 = 148.86 \][/tex]
5. Calculate the variance [tex]\(\sigma^2\)[/tex]:
[tex]\[ \sigma^2 = \frac{148.86}{12} = 12.405 \][/tex]
So, the variance is [tex]\( \sigma^2 = 12.405 \)[/tex]. The missing values in the formula are [tex]\( 148.86 \)[/tex] for the sum of squared differences and [tex]\( 12.405 \)[/tex] for the variance. Therefore, the correct variance is:
[tex]\[ \sigma^2 = 12.405 \][/tex]
1. Given Data:
- Monthly Rainfall (in inches): [tex]\(1.8, 2.5, 2.6, 4.4, 4.4, 7.3, 8.0, 9.5, 10.3, 10.4, 11.1, 11.7\)[/tex]
- Mean ([tex]\(\mu\)[/tex]): [tex]\(7\)[/tex]
- Number of observations ([tex]\(N\)[/tex]): [tex]\(12\)[/tex]
2. Variance Formula:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N} \][/tex]
3. Calculate each squared difference [tex]\((x_i - \mu)^2\)[/tex]:
- [tex]\((1.8 - 7)^2 = 27.04\)[/tex]
- [tex]\((2.5 - 7)^2 = 20.25\)[/tex]
- [tex]\((2.6 - 7)^2 = 19.36\)[/tex]
- [tex]\((4.4 - 7)^2 = 6.76\)[/tex]
- [tex]\((4.4 - 7)^2 = 6.76\)[/tex]
- [tex]\((7.3 - 7)^2 = 0.09\)[/tex]
- [tex]\((8.0 - 7)^2 = 1.00\)[/tex]
- [tex]\((9.5 - 7)^2 = 6.25\)[/tex]
- [tex]\((10.3 - 7)^2 = 10.89\)[/tex]
- [tex]\((10.4 - 7)^2 = 11.56\)[/tex]
- [tex]\((11.1 - 7)^2 = 16.81\)[/tex]
- [tex]\((11.7 - 7)^2 = 22.09\)[/tex]
4. Summing the squared differences:
[tex]\[ 27.04 + 20.25 + 19.36 + 6.76 + 6.76 + 0.09 + 1.00 + 6.25 + 10.89 + 11.56 + 16.81 + 22.09 = 148.86 \][/tex]
5. Calculate the variance [tex]\(\sigma^2\)[/tex]:
[tex]\[ \sigma^2 = \frac{148.86}{12} = 12.405 \][/tex]
So, the variance is [tex]\( \sigma^2 = 12.405 \)[/tex]. The missing values in the formula are [tex]\( 148.86 \)[/tex] for the sum of squared differences and [tex]\( 12.405 \)[/tex] for the variance. Therefore, the correct variance is:
[tex]\[ \sigma^2 = 12.405 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.