Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the domain and range of the function [tex]\( f(x) = \log(x-4) - 3 \)[/tex], let's break down the problem step-by-step.
### Finding the Domain:
1. Identify the argument of the logarithmic function: The logarithmic function [tex]\(\log(x-4)\)[/tex] inside [tex]\( f(x) \)[/tex] must have a positive argument.
2. Set up the inequality for the argument: Since the logarithm is only defined for positive values, we need:
[tex]\[ x - 4 > 0 \][/tex]
3. Solve the inequality:
[tex]\[ x > 4 \][/tex]
Therefore, the smallest value that [tex]\(x\)[/tex] can take is just greater than 4. There is no upper limit to the value of [tex]\(x\)[/tex].
4. Express the domain in interval notation:
[tex]\[ (4, \infty) \][/tex]
Thus, the domain of [tex]\( f(x) = \log(x-4) - 3 \)[/tex] is [tex]\((4, \infty)\)[/tex].
### Finding the Range:
1. Understand the behavior of the logarithmic function: The logarithmic function [tex]\(\log(x-4)\)[/tex] can produce any real number as output; its range is [tex]\((-∞, ∞)\)[/tex].
2. Transform the range by the vertical shift: Subtracting 3 from the logarithm shifts its range down by 3 units, but this shift does not set any specific limits on the transformed values.
3. Determine the new range: Therefore, even after subtracting 3, the output can still be any real number.
Hence, the range of [tex]\( f(x) = \log(x-4) - 3 \)[/tex] is [tex]\((-∞, ∞)\)[/tex].
### Conclusion:
- Domain: [tex]\( (4, \infty) \)[/tex]
- Range: [tex]\((-∞, ∞)\)[/tex]
This means the function [tex]\( f(x) = \log(x-4) - 3 \)[/tex] is defined for all [tex]\(x\)[/tex] values greater than 4, and it can take any real number as its output.
### Finding the Domain:
1. Identify the argument of the logarithmic function: The logarithmic function [tex]\(\log(x-4)\)[/tex] inside [tex]\( f(x) \)[/tex] must have a positive argument.
2. Set up the inequality for the argument: Since the logarithm is only defined for positive values, we need:
[tex]\[ x - 4 > 0 \][/tex]
3. Solve the inequality:
[tex]\[ x > 4 \][/tex]
Therefore, the smallest value that [tex]\(x\)[/tex] can take is just greater than 4. There is no upper limit to the value of [tex]\(x\)[/tex].
4. Express the domain in interval notation:
[tex]\[ (4, \infty) \][/tex]
Thus, the domain of [tex]\( f(x) = \log(x-4) - 3 \)[/tex] is [tex]\((4, \infty)\)[/tex].
### Finding the Range:
1. Understand the behavior of the logarithmic function: The logarithmic function [tex]\(\log(x-4)\)[/tex] can produce any real number as output; its range is [tex]\((-∞, ∞)\)[/tex].
2. Transform the range by the vertical shift: Subtracting 3 from the logarithm shifts its range down by 3 units, but this shift does not set any specific limits on the transformed values.
3. Determine the new range: Therefore, even after subtracting 3, the output can still be any real number.
Hence, the range of [tex]\( f(x) = \log(x-4) - 3 \)[/tex] is [tex]\((-∞, ∞)\)[/tex].
### Conclusion:
- Domain: [tex]\( (4, \infty) \)[/tex]
- Range: [tex]\((-∞, ∞)\)[/tex]
This means the function [tex]\( f(x) = \log(x-4) - 3 \)[/tex] is defined for all [tex]\(x\)[/tex] values greater than 4, and it can take any real number as its output.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.