Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we need to identify the correct formulas for calculating the variance and standard deviation based on the given sample data.
### Step 1: Define the Data
We are given the daily heights of bamboo stalks:
[tex]\[ 20, 19, 17, 16, 18, 15, 20, 21 \][/tex]
### Step 2: Calculate the Mean ([tex]\(\bar{x}\)[/tex])
The mean ([tex]\(\bar{x}\)[/tex]) is calculated as:
[tex]\[ \bar{x} = \frac{\sum_{i=1}^n x_i}{n} \][/tex]
where [tex]\( x_i \)[/tex] are the individual heights and [tex]\( n \)[/tex] is the number of observations.
For the given data:
[tex]\[ \bar{x} = \frac{20 + 19 + 17 + 16 + 18 + 15 + 20 + 21}{8} = \frac{146}{8} = 18.25 \][/tex]
### Step 3: Calculate the Sum of Squared Deviations
We calculate the squared deviation of each observation from the mean:
[tex]\[ (x - \bar{x})^2 \][/tex]
For each height:
[tex]\[ (20 - 18.25)^2 = 3.0625 \][/tex]
[tex]\[ (19 - 18.25)^2 = 0.5625 \][/tex]
[tex]\[ (17 - 18.25)^2 = 1.5625 \][/tex]
[tex]\[ (16 - 18.25)^2 = 5.0625 \][/tex]
[tex]\[ (18 - 18.25)^2 = 0.0625 \][/tex]
[tex]\[ (15 - 18.25)^2 = 10.5625 \][/tex]
[tex]\[ (20 - 18.25)^2 = 3.0625 \][/tex]
[tex]\[ (21 - 18.25)^2 = 7.5625 \][/tex]
Summing these squared deviations:
[tex]\[ 3.0625 + 0.5625 + 1.5625 + 5.0625 + 0.0625 + 10.5625 + 3.0625 + 7.5625 = 31.5 \][/tex]
### Step 4: Calculate the Variance
Using formula A:
[tex]\[ s^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \][/tex]
For the data:
[tex]\[ s^2 = \frac{31.5}{8 - 1} = \frac{31.5}{7} = 4.5 \][/tex]
### Step 5: Calculate the Standard Deviation
Using formula B:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
For the data:
[tex]\[ s = \sqrt{4.5} \approx 2.1213 \][/tex]
### Conclusion
The variance of the sample is given by formula A:
[tex]\[ s^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \][/tex]
The standard deviation of the sample is given by formula B:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
So, the formulas we should use are:
- For variance: Formula A [tex]\( \boxed{A} \)[/tex]
- For standard deviation: Formula B [tex]\( \boxed{B} \)[/tex]
### Step 1: Define the Data
We are given the daily heights of bamboo stalks:
[tex]\[ 20, 19, 17, 16, 18, 15, 20, 21 \][/tex]
### Step 2: Calculate the Mean ([tex]\(\bar{x}\)[/tex])
The mean ([tex]\(\bar{x}\)[/tex]) is calculated as:
[tex]\[ \bar{x} = \frac{\sum_{i=1}^n x_i}{n} \][/tex]
where [tex]\( x_i \)[/tex] are the individual heights and [tex]\( n \)[/tex] is the number of observations.
For the given data:
[tex]\[ \bar{x} = \frac{20 + 19 + 17 + 16 + 18 + 15 + 20 + 21}{8} = \frac{146}{8} = 18.25 \][/tex]
### Step 3: Calculate the Sum of Squared Deviations
We calculate the squared deviation of each observation from the mean:
[tex]\[ (x - \bar{x})^2 \][/tex]
For each height:
[tex]\[ (20 - 18.25)^2 = 3.0625 \][/tex]
[tex]\[ (19 - 18.25)^2 = 0.5625 \][/tex]
[tex]\[ (17 - 18.25)^2 = 1.5625 \][/tex]
[tex]\[ (16 - 18.25)^2 = 5.0625 \][/tex]
[tex]\[ (18 - 18.25)^2 = 0.0625 \][/tex]
[tex]\[ (15 - 18.25)^2 = 10.5625 \][/tex]
[tex]\[ (20 - 18.25)^2 = 3.0625 \][/tex]
[tex]\[ (21 - 18.25)^2 = 7.5625 \][/tex]
Summing these squared deviations:
[tex]\[ 3.0625 + 0.5625 + 1.5625 + 5.0625 + 0.0625 + 10.5625 + 3.0625 + 7.5625 = 31.5 \][/tex]
### Step 4: Calculate the Variance
Using formula A:
[tex]\[ s^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \][/tex]
For the data:
[tex]\[ s^2 = \frac{31.5}{8 - 1} = \frac{31.5}{7} = 4.5 \][/tex]
### Step 5: Calculate the Standard Deviation
Using formula B:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
For the data:
[tex]\[ s = \sqrt{4.5} \approx 2.1213 \][/tex]
### Conclusion
The variance of the sample is given by formula A:
[tex]\[ s^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \][/tex]
The standard deviation of the sample is given by formula B:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
So, the formulas we should use are:
- For variance: Formula A [tex]\( \boxed{A} \)[/tex]
- For standard deviation: Formula B [tex]\( \boxed{B} \)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.