Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we need to identify the correct formulas for calculating the variance and standard deviation based on the given sample data.
### Step 1: Define the Data
We are given the daily heights of bamboo stalks:
[tex]\[ 20, 19, 17, 16, 18, 15, 20, 21 \][/tex]
### Step 2: Calculate the Mean ([tex]\(\bar{x}\)[/tex])
The mean ([tex]\(\bar{x}\)[/tex]) is calculated as:
[tex]\[ \bar{x} = \frac{\sum_{i=1}^n x_i}{n} \][/tex]
where [tex]\( x_i \)[/tex] are the individual heights and [tex]\( n \)[/tex] is the number of observations.
For the given data:
[tex]\[ \bar{x} = \frac{20 + 19 + 17 + 16 + 18 + 15 + 20 + 21}{8} = \frac{146}{8} = 18.25 \][/tex]
### Step 3: Calculate the Sum of Squared Deviations
We calculate the squared deviation of each observation from the mean:
[tex]\[ (x - \bar{x})^2 \][/tex]
For each height:
[tex]\[ (20 - 18.25)^2 = 3.0625 \][/tex]
[tex]\[ (19 - 18.25)^2 = 0.5625 \][/tex]
[tex]\[ (17 - 18.25)^2 = 1.5625 \][/tex]
[tex]\[ (16 - 18.25)^2 = 5.0625 \][/tex]
[tex]\[ (18 - 18.25)^2 = 0.0625 \][/tex]
[tex]\[ (15 - 18.25)^2 = 10.5625 \][/tex]
[tex]\[ (20 - 18.25)^2 = 3.0625 \][/tex]
[tex]\[ (21 - 18.25)^2 = 7.5625 \][/tex]
Summing these squared deviations:
[tex]\[ 3.0625 + 0.5625 + 1.5625 + 5.0625 + 0.0625 + 10.5625 + 3.0625 + 7.5625 = 31.5 \][/tex]
### Step 4: Calculate the Variance
Using formula A:
[tex]\[ s^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \][/tex]
For the data:
[tex]\[ s^2 = \frac{31.5}{8 - 1} = \frac{31.5}{7} = 4.5 \][/tex]
### Step 5: Calculate the Standard Deviation
Using formula B:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
For the data:
[tex]\[ s = \sqrt{4.5} \approx 2.1213 \][/tex]
### Conclusion
The variance of the sample is given by formula A:
[tex]\[ s^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \][/tex]
The standard deviation of the sample is given by formula B:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
So, the formulas we should use are:
- For variance: Formula A [tex]\( \boxed{A} \)[/tex]
- For standard deviation: Formula B [tex]\( \boxed{B} \)[/tex]
### Step 1: Define the Data
We are given the daily heights of bamboo stalks:
[tex]\[ 20, 19, 17, 16, 18, 15, 20, 21 \][/tex]
### Step 2: Calculate the Mean ([tex]\(\bar{x}\)[/tex])
The mean ([tex]\(\bar{x}\)[/tex]) is calculated as:
[tex]\[ \bar{x} = \frac{\sum_{i=1}^n x_i}{n} \][/tex]
where [tex]\( x_i \)[/tex] are the individual heights and [tex]\( n \)[/tex] is the number of observations.
For the given data:
[tex]\[ \bar{x} = \frac{20 + 19 + 17 + 16 + 18 + 15 + 20 + 21}{8} = \frac{146}{8} = 18.25 \][/tex]
### Step 3: Calculate the Sum of Squared Deviations
We calculate the squared deviation of each observation from the mean:
[tex]\[ (x - \bar{x})^2 \][/tex]
For each height:
[tex]\[ (20 - 18.25)^2 = 3.0625 \][/tex]
[tex]\[ (19 - 18.25)^2 = 0.5625 \][/tex]
[tex]\[ (17 - 18.25)^2 = 1.5625 \][/tex]
[tex]\[ (16 - 18.25)^2 = 5.0625 \][/tex]
[tex]\[ (18 - 18.25)^2 = 0.0625 \][/tex]
[tex]\[ (15 - 18.25)^2 = 10.5625 \][/tex]
[tex]\[ (20 - 18.25)^2 = 3.0625 \][/tex]
[tex]\[ (21 - 18.25)^2 = 7.5625 \][/tex]
Summing these squared deviations:
[tex]\[ 3.0625 + 0.5625 + 1.5625 + 5.0625 + 0.0625 + 10.5625 + 3.0625 + 7.5625 = 31.5 \][/tex]
### Step 4: Calculate the Variance
Using formula A:
[tex]\[ s^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \][/tex]
For the data:
[tex]\[ s^2 = \frac{31.5}{8 - 1} = \frac{31.5}{7} = 4.5 \][/tex]
### Step 5: Calculate the Standard Deviation
Using formula B:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
For the data:
[tex]\[ s = \sqrt{4.5} \approx 2.1213 \][/tex]
### Conclusion
The variance of the sample is given by formula A:
[tex]\[ s^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1} \][/tex]
The standard deviation of the sample is given by formula B:
[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]
So, the formulas we should use are:
- For variance: Formula A [tex]\( \boxed{A} \)[/tex]
- For standard deviation: Formula B [tex]\( \boxed{B} \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.