Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To analyze the trigonometric equation [tex]\( y = 3 - 8 \sin(x) \)[/tex], we need to determine its amplitude, period, and phase shift.
### Amplitude
The amplitude of a sine function [tex]\( y = A \sin(Bx - C) + D \)[/tex] is given by the coefficient in front of the sine term, [tex]\( A \)[/tex]. In this equation, [tex]\( y = 3 - 8 \sin(x) \)[/tex], the sine term is [tex]\( -8 \sin(x) \)[/tex], and thus the coefficient is 8. Therefore, the amplitude is:
[tex]\[ \boxed{8} \][/tex]
### Period
The period of a sine function is determined by the coefficient [tex]\( B \)[/tex] in the term [tex]\( Bx \)[/tex] inside the sine function. For a general sine function [tex]\( y = A \sin(Bx - C) + D \)[/tex], the period is calculated as:
[tex]\[ \text{Period} = \frac{2\pi}{B} \][/tex]
In this case, the coefficient [tex]\( B \)[/tex] in front of [tex]\( x \)[/tex] is 1, so the period is:
[tex]\[ \text{Period} = \frac{2\pi}{1} = 2\pi \][/tex]
Therefore, the period of the function is:
[tex]\[ \boxed{6.283185307179586} \][/tex]
### Phase Shift
The phase shift of a sine function [tex]\( y = A \sin(Bx - C) + D \)[/tex] is determined by the term [tex]\( \frac{C}{B} \)[/tex]. If there is no term [tex]\( C \)[/tex] to shift the function horizontally, then there is no phase shift. In this function [tex]\( y = 3 - 8 \sin(x) \)[/tex], there is no horizontal shift term inside the sine function.
Thus, the phase shift is:
[tex]\[ \boxed{\text{no phase shift}} \][/tex]
So, the complete analysis of the function [tex]\( y = 3 - 8 \sin(x) \)[/tex] gives us:
- Amplitude: [tex]\( \boxed{8} \)[/tex]
- Period: [tex]\( \boxed{6.283185307179586} \)[/tex]
- Phase Shift: [tex]\( \boxed{\text{no phase shift}} \)[/tex]
### Amplitude
The amplitude of a sine function [tex]\( y = A \sin(Bx - C) + D \)[/tex] is given by the coefficient in front of the sine term, [tex]\( A \)[/tex]. In this equation, [tex]\( y = 3 - 8 \sin(x) \)[/tex], the sine term is [tex]\( -8 \sin(x) \)[/tex], and thus the coefficient is 8. Therefore, the amplitude is:
[tex]\[ \boxed{8} \][/tex]
### Period
The period of a sine function is determined by the coefficient [tex]\( B \)[/tex] in the term [tex]\( Bx \)[/tex] inside the sine function. For a general sine function [tex]\( y = A \sin(Bx - C) + D \)[/tex], the period is calculated as:
[tex]\[ \text{Period} = \frac{2\pi}{B} \][/tex]
In this case, the coefficient [tex]\( B \)[/tex] in front of [tex]\( x \)[/tex] is 1, so the period is:
[tex]\[ \text{Period} = \frac{2\pi}{1} = 2\pi \][/tex]
Therefore, the period of the function is:
[tex]\[ \boxed{6.283185307179586} \][/tex]
### Phase Shift
The phase shift of a sine function [tex]\( y = A \sin(Bx - C) + D \)[/tex] is determined by the term [tex]\( \frac{C}{B} \)[/tex]. If there is no term [tex]\( C \)[/tex] to shift the function horizontally, then there is no phase shift. In this function [tex]\( y = 3 - 8 \sin(x) \)[/tex], there is no horizontal shift term inside the sine function.
Thus, the phase shift is:
[tex]\[ \boxed{\text{no phase shift}} \][/tex]
So, the complete analysis of the function [tex]\( y = 3 - 8 \sin(x) \)[/tex] gives us:
- Amplitude: [tex]\( \boxed{8} \)[/tex]
- Period: [tex]\( \boxed{6.283185307179586} \)[/tex]
- Phase Shift: [tex]\( \boxed{\text{no phase shift}} \)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.