At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Alright, let's break down the process of calculating the z-score step-by-step.
1. Understand the given data:
- The mean [tex]\( \mu \)[/tex] is 7.
- The variance [tex]\( \sigma^2 \)[/tex] is 12.405, which means the standard deviation [tex]\( \sigma \)[/tex] is approximately 3.522.
- You are given a data point [tex]\( x \)[/tex] which is 11.7.
2. Identify the formula for the z-score:
The z-score formula is:
[tex]\[ z_x = \frac{x - \mu}{\sigma} \][/tex]
where [tex]\( x \)[/tex] is the data point, [tex]\( \mu \)[/tex] is the mean, and [tex]\( \sigma \)[/tex] is the standard deviation.
3. Substitute the values into the formula:
First, identify each component:
[tex]\[ x = 11.7 \][/tex]
[tex]\[ \mu = 7 \][/tex]
[tex]\[ \sigma = 3.522 \][/tex]
4. Perform the calculations:
Substitute [tex]\( x \)[/tex], [tex]\( \mu \)[/tex], and [tex]\( \sigma \)[/tex] into the z-score formula:
[tex]\[ z_x = \frac{11.7 - 7}{3.522} \][/tex]
Calculate the numerator:
[tex]\[ 11.7 - 7 = 4.7 \][/tex]
Now, divide the numerator by the standard deviation:
[tex]\[ z_x = \frac{4.7}{3.522} \approx 1.334 \][/tex]
So, the z-score for the data point 11.7 is approximately 1.334.
1. Understand the given data:
- The mean [tex]\( \mu \)[/tex] is 7.
- The variance [tex]\( \sigma^2 \)[/tex] is 12.405, which means the standard deviation [tex]\( \sigma \)[/tex] is approximately 3.522.
- You are given a data point [tex]\( x \)[/tex] which is 11.7.
2. Identify the formula for the z-score:
The z-score formula is:
[tex]\[ z_x = \frac{x - \mu}{\sigma} \][/tex]
where [tex]\( x \)[/tex] is the data point, [tex]\( \mu \)[/tex] is the mean, and [tex]\( \sigma \)[/tex] is the standard deviation.
3. Substitute the values into the formula:
First, identify each component:
[tex]\[ x = 11.7 \][/tex]
[tex]\[ \mu = 7 \][/tex]
[tex]\[ \sigma = 3.522 \][/tex]
4. Perform the calculations:
Substitute [tex]\( x \)[/tex], [tex]\( \mu \)[/tex], and [tex]\( \sigma \)[/tex] into the z-score formula:
[tex]\[ z_x = \frac{11.7 - 7}{3.522} \][/tex]
Calculate the numerator:
[tex]\[ 11.7 - 7 = 4.7 \][/tex]
Now, divide the numerator by the standard deviation:
[tex]\[ z_x = \frac{4.7}{3.522} \approx 1.334 \][/tex]
So, the z-score for the data point 11.7 is approximately 1.334.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.