Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

What are the domain and range of the function [tex]\( f(x) = -\log(5 - x) + 9 \)[/tex]?

A. Domain: [tex]\( x \ \textless \ 5 \)[/tex], Range: [tex]\( y \geq 9 \)[/tex]

B. Domain: [tex]\( x \ \textless \ 5 \)[/tex], Range: [tex]\( (-\infty, \infty) \)[/tex]

C. Domain: [tex]\( x \geq 9 \)[/tex], Range: [tex]\( (-\infty, \infty) \)[/tex]

D. Domain: [tex]\( x \geq 9 \)[/tex], Range: [tex]\( y \geq 9 \)[/tex]


Sagot :

To find the domain and range of the function [tex]\( f(x) = -\log(5-x) + 9 \)[/tex], let's go through the steps in detail.

### Domain:

The domain of a function is the set of all possible input values (x-values) that the function can accept. For the logarithmic function [tex]\(\log(5-x)\)[/tex], we need to consider where the log function is defined.

1. The logarithmic function [tex]\(\log(z)\)[/tex] is only defined for [tex]\(z > 0\)[/tex].
2. In our function, this means [tex]\(5-x > 0\)[/tex].
3. Solving the inequality [tex]\(5 - x > 0\)[/tex]:
[tex]\[ 5 - x > 0 \][/tex]
[tex]\[ -x > -5 \][/tex]
[tex]\[ x < 5 \][/tex]

So, the domain of [tex]\(f(x)\)[/tex] is [tex]\(x < 5\)[/tex].

### Range:

The range of a function is the set of all possible output values (y-values) that the function can produce.

1. Consider the inner function [tex]\( \log(5-x) \)[/tex]:
- Since [tex]\(5 - x\)[/tex] is always positive and less than 5, [tex]\(\log(5-x)\)[/tex] can take any real value, from negative to positive infinity.

2. The function [tex]\(f(x)\)[/tex] is given by [tex]\( -\log(5-x) + 9 \)[/tex].

3. Now, consider the negation [tex]\(-\log(5-x)\)[/tex]. When [tex]\(\log(5-x)\)[/tex] is large positive, [tex]\(-\log(5-x)\)[/tex] becomes large negative and when [tex]\(\log(5-x)\)[/tex] is large negative, [tex]\(-\log(5-x)\)[/tex] becomes large positive.

4. Adding 9 shifts the entire range of [tex]\(-\log(5-x)\)[/tex] up by 9 units.

Thus, the minimum value of [tex]\( -\log(5-x) \)[/tex] occurs when [tex]\(\log(5-x)\)[/tex] takes its maximum value (which is when [tex]\( 5-x \)[/tex] approaches 0 from the right, i.e., [tex]\(x \)[/tex] approaches 5 from the left), making [tex]\(-\log(5-x)\)[/tex] very negative.

Therefore, [tex]\( y = -\log(5-x) + 9 \)[/tex] can take on values [tex]\(y\)[/tex] such that [tex]\(y \geq 9\)[/tex].

### Conclusion:
The correct pair of domain and range is:
- Domain: [tex]\(x < 5\)[/tex]
- Range: [tex]\(y \geq 9\)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.