Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Suppose a car's momentum is calculated to be [tex]\(36,000 \, \frac{kg \cdot km}{hr}\)[/tex]. The mass of the car is [tex]\(1,500 \, kg\)[/tex]. What is the magnitude of the velocity of the car?

A. [tex]\(37,500 \, \frac{km}{hr}\)[/tex]
B. [tex]\(34,500 \, \frac{km}{hr}\)[/tex]
C. [tex]\(0.042 \, \frac{km}{hr}\)[/tex]
D. [tex]\(24 \, \frac{km}{hr}\)[/tex]

Sagot :

To determine the magnitude of the velocity of the car, we can utilize the relationship between momentum, mass, and velocity. The formula for momentum [tex]\( p \)[/tex] is given by:

[tex]\[ p = m \times v \][/tex]

where [tex]\( p \)[/tex] is the momentum, [tex]\( m \)[/tex] is the mass, and [tex]\( v \)[/tex] is the velocity.

Given:
- Momentum [tex]\( p = 36,000 \ \frac{\text{kg}\cdot\text{km}}{\text{hr}} \)[/tex]
- Mass [tex]\( m = 1,500 \ \text{kg} \)[/tex]

We need to find the velocity ([tex]\( v \)[/tex]) of the car. Rearranging the formula to solve for [tex]\( v \)[/tex]:

[tex]\[ v = \frac{p}{m} \][/tex]

Substitute the known values into the equation:

[tex]\[ v = \frac{36,000 \ \frac{\text{kg}\cdot\text{km}}{\text{hr}}}{1,500 \ \text{kg}} \][/tex]

[tex]\[ v = \frac{36,000}{1,500} \][/tex]

[tex]\[ v = 24 \ \frac{\text{km}}{\text{hr}} \][/tex]

Thus, the magnitude of the velocity of the car is:

[tex]\[ \boxed{24 \ \text{km/hr}} \][/tex]