Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the approximate value of [tex]\( P(-0.78 \leq Z \leq 2.00) \)[/tex] for a standard normal distribution, let's follow the steps below:
1. Understand the problem:
We need to find the probability that the standard normal random variable [tex]\( Z \)[/tex] lies between -0.78 and 2.00.
2. Use the standard normal distribution table:
The table provides cumulative probabilities [tex]\( P(Z \leq z) \)[/tex] for given [tex]\( z \)[/tex] values.
3. Find [tex]\( P(Z \leq 2.00) \)[/tex]:
From the table, we see that [tex]\( P(Z \leq 2.00) = 0.9772 \)[/tex].
4. Find [tex]\( P(Z \leq -0.78) \)[/tex]:
Since the table typically provides probabilities for positive values of [tex]\( Z \)[/tex], we need to convert -0.78 to a positive equivalent using the symmetry property of the normal distribution. According to the symmetry property, [tex]\( P(Z \leq -0.78) = 1 - P(Z \leq 0.78) \)[/tex]. From the table, [tex]\( P(Z \leq 0.78) = 0.7823 \)[/tex].
Therefore, [tex]\( P(Z \leq -0.78) = 1 - 0.7823 = 0.2177 \)[/tex].
5. Calculate [tex]\( P(-0.78 \leq Z \leq 2.00) \)[/tex]:
This probability is the difference between the two cumulative probabilities:
[tex]\[ P(-0.78 \leq Z \leq 2.00) = P(Z \leq 2.00) - P(Z \leq -0.78) \][/tex]
Substituting the values we found:
[tex]\[ P(-0.78 \leq Z \leq 2.00) = 0.9772 - 0.2177 = 0.7595 \][/tex]
Therefore, the approximate value of [tex]\( P(-0.78 \leq Z \leq 2.00) \)[/tex] is [tex]\( 0.7595 \)[/tex], which corresponds to approximately [tex]\( 75.95\% \)[/tex].
This calculated probability does not precisely match any of the given multiple-choice answers directly, but in terms of percentages, it is closest to [tex]\( 78\% \)[/tex].
1. Understand the problem:
We need to find the probability that the standard normal random variable [tex]\( Z \)[/tex] lies between -0.78 and 2.00.
2. Use the standard normal distribution table:
The table provides cumulative probabilities [tex]\( P(Z \leq z) \)[/tex] for given [tex]\( z \)[/tex] values.
3. Find [tex]\( P(Z \leq 2.00) \)[/tex]:
From the table, we see that [tex]\( P(Z \leq 2.00) = 0.9772 \)[/tex].
4. Find [tex]\( P(Z \leq -0.78) \)[/tex]:
Since the table typically provides probabilities for positive values of [tex]\( Z \)[/tex], we need to convert -0.78 to a positive equivalent using the symmetry property of the normal distribution. According to the symmetry property, [tex]\( P(Z \leq -0.78) = 1 - P(Z \leq 0.78) \)[/tex]. From the table, [tex]\( P(Z \leq 0.78) = 0.7823 \)[/tex].
Therefore, [tex]\( P(Z \leq -0.78) = 1 - 0.7823 = 0.2177 \)[/tex].
5. Calculate [tex]\( P(-0.78 \leq Z \leq 2.00) \)[/tex]:
This probability is the difference between the two cumulative probabilities:
[tex]\[ P(-0.78 \leq Z \leq 2.00) = P(Z \leq 2.00) - P(Z \leq -0.78) \][/tex]
Substituting the values we found:
[tex]\[ P(-0.78 \leq Z \leq 2.00) = 0.9772 - 0.2177 = 0.7595 \][/tex]
Therefore, the approximate value of [tex]\( P(-0.78 \leq Z \leq 2.00) \)[/tex] is [tex]\( 0.7595 \)[/tex], which corresponds to approximately [tex]\( 75.95\% \)[/tex].
This calculated probability does not precisely match any of the given multiple-choice answers directly, but in terms of percentages, it is closest to [tex]\( 78\% \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.