Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the equation that models the number of butterflies in the park after [tex]\( n \)[/tex] years, we need to follow these steps:
1. Determine the Initial Number of Butterflies:
The current number of butterflies is estimated to be [tex]\( 20 \)[/tex] thousand. This is our initial quantity, denoted as [tex]\( N_0 \)[/tex].
2. Identify the Growth Rate:
The population is expected to grow by [tex]\( 4 \% \)[/tex] per year. This growth rate can be expressed as a decimal by dividing 4 by 100, which gives us [tex]\( 0.04 \)[/tex].
3. Formulate the Population Growth Equation:
The general formula for exponential growth is:
[tex]\[ N(n) = N_0 \times (1 + r)^n \][/tex]
where:
- [tex]\( N(n) \)[/tex] is the number of butterflies after [tex]\( n \)[/tex] years,
- [tex]\( N_0 \)[/tex] is the initial number of butterflies,
- [tex]\( r \)[/tex] is the growth rate,
- [tex]\( n \)[/tex] is the number of years.
4. Substitute the Known Values into the Equation:
Given [tex]\( N_0 = 20 \)[/tex] (thousand butterflies) and [tex]\( r = 0.04 \)[/tex], we substitute these values into the formula:
[tex]\[ N(n) = 20 \times (1 + 0.04)^n \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ N(n) = 20 \times 1.04^n \][/tex]
Thus, the number of butterflies in thousands after [tex]\( n \)[/tex] years is modeled by the equation:
[tex]\[ N(n) = 20 \times 1.04^n \][/tex]
This equation will help scientists predict the butterfly population in the park as time progresses, taking into account the estimated annual growth rate.
1. Determine the Initial Number of Butterflies:
The current number of butterflies is estimated to be [tex]\( 20 \)[/tex] thousand. This is our initial quantity, denoted as [tex]\( N_0 \)[/tex].
2. Identify the Growth Rate:
The population is expected to grow by [tex]\( 4 \% \)[/tex] per year. This growth rate can be expressed as a decimal by dividing 4 by 100, which gives us [tex]\( 0.04 \)[/tex].
3. Formulate the Population Growth Equation:
The general formula for exponential growth is:
[tex]\[ N(n) = N_0 \times (1 + r)^n \][/tex]
where:
- [tex]\( N(n) \)[/tex] is the number of butterflies after [tex]\( n \)[/tex] years,
- [tex]\( N_0 \)[/tex] is the initial number of butterflies,
- [tex]\( r \)[/tex] is the growth rate,
- [tex]\( n \)[/tex] is the number of years.
4. Substitute the Known Values into the Equation:
Given [tex]\( N_0 = 20 \)[/tex] (thousand butterflies) and [tex]\( r = 0.04 \)[/tex], we substitute these values into the formula:
[tex]\[ N(n) = 20 \times (1 + 0.04)^n \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ N(n) = 20 \times 1.04^n \][/tex]
Thus, the number of butterflies in thousands after [tex]\( n \)[/tex] years is modeled by the equation:
[tex]\[ N(n) = 20 \times 1.04^n \][/tex]
This equation will help scientists predict the butterfly population in the park as time progresses, taking into account the estimated annual growth rate.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.