Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the amplitude, period, and phase shift of the trigonometric equation [tex]\( y = 2 \sin(x) \)[/tex], we need to analyze the standard form of the sine function, which is:
[tex]\[ y = A \sin(Bx + C) \][/tex]
Here, [tex]\( A \)[/tex] represents the amplitude, [tex]\( B \)[/tex] affects the period, and [tex]\( C \)[/tex] influences the phase shift.
1. Amplitude [tex]\( (A) \)[/tex]:
The amplitude is the coefficient of the sine function, which affects the height of the wave. For the given equation [tex]\( y = 2 \sin(x) \)[/tex], the coefficient [tex]\( A \)[/tex] is 2. Therefore, the amplitude is:
[tex]\[ \text{Amplitude} = 2 \][/tex]
2. Period:
The period of the sine function is determined by the coefficient [tex]\( B \)[/tex] inside the argument of the sine function. The standard period of [tex]\( \sin(x) \)[/tex] is [tex]\( 2\pi \)[/tex]. When the argument is [tex]\( Bx \)[/tex], the period changes to [tex]\( \frac{2\pi}{B} \)[/tex]. In the given equation, since [tex]\( B = 1 \)[/tex], the period remains:
[tex]\[ \text{Period} = 2\pi \][/tex]
3. Phase Shift:
The phase shift is determined by the term [tex]\( C \)[/tex] inside the sine function. The phase shift is calculated as [tex]\( -\frac{C}{B} \)[/tex]. In this case, since the given equation does not include any additional term inside the sine function (i.e., [tex]\( C = 0 \)[/tex]), there is no horizontal shift. Therefore, the phase shift is:
[tex]\[ \text{Phase Shift} = 0 \][/tex]
This indicates there is no phase shift for the given function.
Hence, summarizing the results:
- Amplitude: [tex]\( 2 \)[/tex]
- Period: [tex]\( 2\pi \)[/tex]
- Phase Shift: No phase shift
[tex]\[ y = A \sin(Bx + C) \][/tex]
Here, [tex]\( A \)[/tex] represents the amplitude, [tex]\( B \)[/tex] affects the period, and [tex]\( C \)[/tex] influences the phase shift.
1. Amplitude [tex]\( (A) \)[/tex]:
The amplitude is the coefficient of the sine function, which affects the height of the wave. For the given equation [tex]\( y = 2 \sin(x) \)[/tex], the coefficient [tex]\( A \)[/tex] is 2. Therefore, the amplitude is:
[tex]\[ \text{Amplitude} = 2 \][/tex]
2. Period:
The period of the sine function is determined by the coefficient [tex]\( B \)[/tex] inside the argument of the sine function. The standard period of [tex]\( \sin(x) \)[/tex] is [tex]\( 2\pi \)[/tex]. When the argument is [tex]\( Bx \)[/tex], the period changes to [tex]\( \frac{2\pi}{B} \)[/tex]. In the given equation, since [tex]\( B = 1 \)[/tex], the period remains:
[tex]\[ \text{Period} = 2\pi \][/tex]
3. Phase Shift:
The phase shift is determined by the term [tex]\( C \)[/tex] inside the sine function. The phase shift is calculated as [tex]\( -\frac{C}{B} \)[/tex]. In this case, since the given equation does not include any additional term inside the sine function (i.e., [tex]\( C = 0 \)[/tex]), there is no horizontal shift. Therefore, the phase shift is:
[tex]\[ \text{Phase Shift} = 0 \][/tex]
This indicates there is no phase shift for the given function.
Hence, summarizing the results:
- Amplitude: [tex]\( 2 \)[/tex]
- Period: [tex]\( 2\pi \)[/tex]
- Phase Shift: No phase shift
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.