Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the amplitude, period, and phase shift of the trigonometric equation [tex]\( y = \frac{1}{2} \sin(x + 6) \)[/tex], let's break it down step by step:
### Amplitude
The amplitude of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is given by the absolute value of the coefficient [tex]\( A \)[/tex] in front of the [tex]\( \sin \)[/tex] function.
For the given equation [tex]\( y = \frac{1}{2} \sin(x + 6) \)[/tex]:
- The coefficient [tex]\( A \)[/tex] is [tex]\( \frac{1}{2} \)[/tex].
Therefore, the amplitude is:
[tex]\[ \text{Amplitude} = \left| \frac{1}{2} \right| = 0.5 \][/tex]
### Period
The period of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is determined by the coefficient [tex]\( B \)[/tex] in front of [tex]\( x \)[/tex]. The period is calculated using the formula:
[tex]\[ \text{Period} = \frac{2\pi}{B} \][/tex]
For the given equation [tex]\( y = \frac{1}{2} \sin(x + 6) \)[/tex]:
- The coefficient [tex]\( B \)[/tex] is [tex]\( 1 \)[/tex] since there is no coefficient explicitly written in front of [tex]\( x \)[/tex], so it is assumed to be [tex]\( 1 \)[/tex].
Therefore, the period is:
[tex]\[ \text{Period} = \frac{2\pi}{1} = 2\pi \approx 6.283185307179586 \][/tex]
### Phase Shift
The phase shift of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is determined by the constant [tex]\( C \)[/tex] inside the sine function and is calculated using the formula:
[tex]\[ \text{Phase Shift} = -\frac{C}{B} \][/tex]
For the given equation [tex]\( y = \frac{1}{2} \sin(x + 6) \)[/tex]:
- The constant [tex]\( C \)[/tex] is [tex]\( 6 \)[/tex]
- The coefficient [tex]\( B \)[/tex] is [tex]\( 1 \)[/tex]
Therefore, the phase shift is:
[tex]\[ \text{Phase Shift} = -\frac{6}{1} = -6 \][/tex]
This indicates a shift to the left by 6 units.
### Conclusion
Based on the above calculations, the characteristics of the trigonometric equation [tex]\( y = \frac{1}{2} \sin(x + 6) \)[/tex] are:
- Amplitude: 0.5
- Period: [tex]\( 2\pi \approx 6.283185307179586 \)[/tex]
- Phase Shift: shifted to the left by 6 units
So, the answers are:
Amplitude: [tex]\( 0.5 \)[/tex]
Phase Shift: shifted to the left
### Amplitude
The amplitude of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is given by the absolute value of the coefficient [tex]\( A \)[/tex] in front of the [tex]\( \sin \)[/tex] function.
For the given equation [tex]\( y = \frac{1}{2} \sin(x + 6) \)[/tex]:
- The coefficient [tex]\( A \)[/tex] is [tex]\( \frac{1}{2} \)[/tex].
Therefore, the amplitude is:
[tex]\[ \text{Amplitude} = \left| \frac{1}{2} \right| = 0.5 \][/tex]
### Period
The period of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is determined by the coefficient [tex]\( B \)[/tex] in front of [tex]\( x \)[/tex]. The period is calculated using the formula:
[tex]\[ \text{Period} = \frac{2\pi}{B} \][/tex]
For the given equation [tex]\( y = \frac{1}{2} \sin(x + 6) \)[/tex]:
- The coefficient [tex]\( B \)[/tex] is [tex]\( 1 \)[/tex] since there is no coefficient explicitly written in front of [tex]\( x \)[/tex], so it is assumed to be [tex]\( 1 \)[/tex].
Therefore, the period is:
[tex]\[ \text{Period} = \frac{2\pi}{1} = 2\pi \approx 6.283185307179586 \][/tex]
### Phase Shift
The phase shift of a sine function [tex]\( y = A \sin(Bx + C) \)[/tex] is determined by the constant [tex]\( C \)[/tex] inside the sine function and is calculated using the formula:
[tex]\[ \text{Phase Shift} = -\frac{C}{B} \][/tex]
For the given equation [tex]\( y = \frac{1}{2} \sin(x + 6) \)[/tex]:
- The constant [tex]\( C \)[/tex] is [tex]\( 6 \)[/tex]
- The coefficient [tex]\( B \)[/tex] is [tex]\( 1 \)[/tex]
Therefore, the phase shift is:
[tex]\[ \text{Phase Shift} = -\frac{6}{1} = -6 \][/tex]
This indicates a shift to the left by 6 units.
### Conclusion
Based on the above calculations, the characteristics of the trigonometric equation [tex]\( y = \frac{1}{2} \sin(x + 6) \)[/tex] are:
- Amplitude: 0.5
- Period: [tex]\( 2\pi \approx 6.283185307179586 \)[/tex]
- Phase Shift: shifted to the left by 6 units
So, the answers are:
Amplitude: [tex]\( 0.5 \)[/tex]
Phase Shift: shifted to the left
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.