Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's find the sum of the given polynomials step-by-step. The polynomials given are:
[tex]\[ P(x) = x^2 - 3x \][/tex]
[tex]\[ Q(x) = -2x^2 + 5x - 3 \][/tex]
To find the sum, we need to combine like terms. Like terms are the terms that contain the same power of [tex]\(x\)[/tex]. Let's align the terms according to their powers:
[tex]\[ \left(x^2 - 3x + 0\right) + \left(-2x^2 + 5x - 3\right) \][/tex]
Now, add the coefficients of like terms:
1. [tex]\(x^2\)[/tex] terms:
[tex]\[ 1x^2 + (-2x^2) = 1 - 2 = -1 \][/tex]
So, the coefficient of [tex]\(x^2\)[/tex] is [tex]\(-1\)[/tex].
2. [tex]\(x\)[/tex] terms:
[tex]\[ -3x + 5x = -3 + 5 = 2 \][/tex]
So, the coefficient of [tex]\(x\)[/tex] is [tex]\(2\)[/tex].
3. Constant term:
[tex]\[ 0 + (-3) = -3 \][/tex]
So, the constant term is [tex]\(-3\)[/tex].
Combining these results, the sum of the polynomials is:
[tex]\[ P(x) + Q(x) = -1x^2 + 2x - 3 \][/tex]
So, the sum of the given polynomials in standard form is:
[tex]\[ -x^2 + 2x - 3 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{-x^2 + 2x - 3} \][/tex]
[tex]\[ P(x) = x^2 - 3x \][/tex]
[tex]\[ Q(x) = -2x^2 + 5x - 3 \][/tex]
To find the sum, we need to combine like terms. Like terms are the terms that contain the same power of [tex]\(x\)[/tex]. Let's align the terms according to their powers:
[tex]\[ \left(x^2 - 3x + 0\right) + \left(-2x^2 + 5x - 3\right) \][/tex]
Now, add the coefficients of like terms:
1. [tex]\(x^2\)[/tex] terms:
[tex]\[ 1x^2 + (-2x^2) = 1 - 2 = -1 \][/tex]
So, the coefficient of [tex]\(x^2\)[/tex] is [tex]\(-1\)[/tex].
2. [tex]\(x\)[/tex] terms:
[tex]\[ -3x + 5x = -3 + 5 = 2 \][/tex]
So, the coefficient of [tex]\(x\)[/tex] is [tex]\(2\)[/tex].
3. Constant term:
[tex]\[ 0 + (-3) = -3 \][/tex]
So, the constant term is [tex]\(-3\)[/tex].
Combining these results, the sum of the polynomials is:
[tex]\[ P(x) + Q(x) = -1x^2 + 2x - 3 \][/tex]
So, the sum of the given polynomials in standard form is:
[tex]\[ -x^2 + 2x - 3 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{-x^2 + 2x - 3} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.