Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the amplitude, period, and phase shift of the trigonometric function given by the equation [tex]\( y = -8\sin(7x) \)[/tex], follow these steps:
### 1. Amplitude
The amplitude of a sine function [tex]\( y = a \sin(bx + c) \)[/tex] is given by the absolute value of the coefficient in front of the sine function, which is [tex]\( |a| \)[/tex].
Here, [tex]\( a = -8 \)[/tex]. Therefore, the amplitude is:
[tex]\[ \text{Amplitude} = | -8 | = 8 \][/tex]
### 2. Period
The period of a sine function [tex]\( y = a \sin(bx + c) \)[/tex] is determined by the coefficient [tex]\( b \)[/tex] in front of the [tex]\( x \)[/tex]-term inside the sine function. The period [tex]\( T \)[/tex] is calculated using the formula:
[tex]\[ T = \frac{2\pi}{b} \][/tex]
In this function, [tex]\( b = 7 \)[/tex]. Therefore, the period is:
[tex]\[ \text{Period} = \frac{2\pi}{7} \approx 0.8975979010256552 \][/tex]
### 3. Phase Shift
The phase shift of a sine function [tex]\( y = a \sin(bx + c) \)[/tex] is given by the value [tex]\( \frac{-c}{b} \)[/tex].
In the given equation [tex]\( y = -8 \sin(7x) \)[/tex], the [tex]\( c \)[/tex] value is 0 because there is no horizontal shift indicated within the argument of the sine function. Hence, the phase shift is:
[tex]\[ \text{Phase Shift} = \frac{0}{7} = 0 \][/tex]
This means the function is not shifted to the left or the right.
Summary:
- Amplitude: 8
- Period: approximately [tex]\( 0.8975979010256552 \)[/tex]
- Phase Shift: 0 (indicating no phase shift)
### 1. Amplitude
The amplitude of a sine function [tex]\( y = a \sin(bx + c) \)[/tex] is given by the absolute value of the coefficient in front of the sine function, which is [tex]\( |a| \)[/tex].
Here, [tex]\( a = -8 \)[/tex]. Therefore, the amplitude is:
[tex]\[ \text{Amplitude} = | -8 | = 8 \][/tex]
### 2. Period
The period of a sine function [tex]\( y = a \sin(bx + c) \)[/tex] is determined by the coefficient [tex]\( b \)[/tex] in front of the [tex]\( x \)[/tex]-term inside the sine function. The period [tex]\( T \)[/tex] is calculated using the formula:
[tex]\[ T = \frac{2\pi}{b} \][/tex]
In this function, [tex]\( b = 7 \)[/tex]. Therefore, the period is:
[tex]\[ \text{Period} = \frac{2\pi}{7} \approx 0.8975979010256552 \][/tex]
### 3. Phase Shift
The phase shift of a sine function [tex]\( y = a \sin(bx + c) \)[/tex] is given by the value [tex]\( \frac{-c}{b} \)[/tex].
In the given equation [tex]\( y = -8 \sin(7x) \)[/tex], the [tex]\( c \)[/tex] value is 0 because there is no horizontal shift indicated within the argument of the sine function. Hence, the phase shift is:
[tex]\[ \text{Phase Shift} = \frac{0}{7} = 0 \][/tex]
This means the function is not shifted to the left or the right.
Summary:
- Amplitude: 8
- Period: approximately [tex]\( 0.8975979010256552 \)[/tex]
- Phase Shift: 0 (indicating no phase shift)
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.