Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the amplitude, period, and phase shift of the trigonometric function given by the equation [tex]\( y = -8\sin(7x) \)[/tex], follow these steps:
### 1. Amplitude
The amplitude of a sine function [tex]\( y = a \sin(bx + c) \)[/tex] is given by the absolute value of the coefficient in front of the sine function, which is [tex]\( |a| \)[/tex].
Here, [tex]\( a = -8 \)[/tex]. Therefore, the amplitude is:
[tex]\[ \text{Amplitude} = | -8 | = 8 \][/tex]
### 2. Period
The period of a sine function [tex]\( y = a \sin(bx + c) \)[/tex] is determined by the coefficient [tex]\( b \)[/tex] in front of the [tex]\( x \)[/tex]-term inside the sine function. The period [tex]\( T \)[/tex] is calculated using the formula:
[tex]\[ T = \frac{2\pi}{b} \][/tex]
In this function, [tex]\( b = 7 \)[/tex]. Therefore, the period is:
[tex]\[ \text{Period} = \frac{2\pi}{7} \approx 0.8975979010256552 \][/tex]
### 3. Phase Shift
The phase shift of a sine function [tex]\( y = a \sin(bx + c) \)[/tex] is given by the value [tex]\( \frac{-c}{b} \)[/tex].
In the given equation [tex]\( y = -8 \sin(7x) \)[/tex], the [tex]\( c \)[/tex] value is 0 because there is no horizontal shift indicated within the argument of the sine function. Hence, the phase shift is:
[tex]\[ \text{Phase Shift} = \frac{0}{7} = 0 \][/tex]
This means the function is not shifted to the left or the right.
Summary:
- Amplitude: 8
- Period: approximately [tex]\( 0.8975979010256552 \)[/tex]
- Phase Shift: 0 (indicating no phase shift)
### 1. Amplitude
The amplitude of a sine function [tex]\( y = a \sin(bx + c) \)[/tex] is given by the absolute value of the coefficient in front of the sine function, which is [tex]\( |a| \)[/tex].
Here, [tex]\( a = -8 \)[/tex]. Therefore, the amplitude is:
[tex]\[ \text{Amplitude} = | -8 | = 8 \][/tex]
### 2. Period
The period of a sine function [tex]\( y = a \sin(bx + c) \)[/tex] is determined by the coefficient [tex]\( b \)[/tex] in front of the [tex]\( x \)[/tex]-term inside the sine function. The period [tex]\( T \)[/tex] is calculated using the formula:
[tex]\[ T = \frac{2\pi}{b} \][/tex]
In this function, [tex]\( b = 7 \)[/tex]. Therefore, the period is:
[tex]\[ \text{Period} = \frac{2\pi}{7} \approx 0.8975979010256552 \][/tex]
### 3. Phase Shift
The phase shift of a sine function [tex]\( y = a \sin(bx + c) \)[/tex] is given by the value [tex]\( \frac{-c}{b} \)[/tex].
In the given equation [tex]\( y = -8 \sin(7x) \)[/tex], the [tex]\( c \)[/tex] value is 0 because there is no horizontal shift indicated within the argument of the sine function. Hence, the phase shift is:
[tex]\[ \text{Phase Shift} = \frac{0}{7} = 0 \][/tex]
This means the function is not shifted to the left or the right.
Summary:
- Amplitude: 8
- Period: approximately [tex]\( 0.8975979010256552 \)[/tex]
- Phase Shift: 0 (indicating no phase shift)
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.