Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Alright, let's look at the polynomials given:
Cory's polynomial: [tex]\( P(x) = x^7 + 3x^5 + x \)[/tex]
Melissa's polynomial: [tex]\( Q(x) = x^7 + 5x + 10 \)[/tex]
### Step-by-Step Solution
1. Adding the polynomials:
When we add the polynomials [tex]\( P(x) \)[/tex] and [tex]\( Q(x) \)[/tex]:
[tex]\[ P(x) + Q(x) = (x^7 + 3x^5 + x) + (x^7 + 5x + 10) \][/tex]
Combine like terms:
[tex]\[ (x^7 + x^7) + 3x^5 + (x + 5x) + 10 \][/tex]
[tex]\[ = 2x^7 + 3x^5 + 6x + 10 \][/tex]
The degree of the resulting polynomial is determined by the highest power of [tex]\( x \)[/tex], which is:
[tex]\[ \text{Degree of } (P(x) + Q(x)) = 7 \][/tex]
2. Subtracting the polynomials:
When we subtract polynomial [tex]\( Q(x) \)[/tex] from [tex]\( P(x) \)[/tex]:
[tex]\[ P(x) - Q(x) = (x^7 + 3x^5 + x) - (x^7 + 5x + 10) \][/tex]
Combine like terms:
[tex]\[ (x^7 - x^7) + 3x^5 + (x - 5x) - 10 \][/tex]
[tex]\[ = 0 + 3x^5 - 4x - 10 \][/tex]
[tex]\[ = 3x^5 - 4x - 10 \][/tex]
The degree of the resulting polynomial is determined by the highest power of [tex]\( x \)[/tex], which is:
[tex]\[ \text{Degree of } (P(x) - Q(x)) = 5 \][/tex]
3. Conclusion:
By comparing the degrees:
- The degree of the polynomial after addition is [tex]\(7\)[/tex].
- The degree of the polynomial after subtraction is [tex]\(5\)[/tex].
Hence, adding their polynomials together results in a polynomial with degree 7, but subtracting one polynomial from the other results in a polynomial with degree 5. Therefore, there is a difference between the degree of the sum and the degree of the difference of the polynomials.
The correct option is:
- Adding their polynomials together results in a polynomial with degree 7, but subtracting one polynomial from the other results in a polynomial with degree 5.
Cory's polynomial: [tex]\( P(x) = x^7 + 3x^5 + x \)[/tex]
Melissa's polynomial: [tex]\( Q(x) = x^7 + 5x + 10 \)[/tex]
### Step-by-Step Solution
1. Adding the polynomials:
When we add the polynomials [tex]\( P(x) \)[/tex] and [tex]\( Q(x) \)[/tex]:
[tex]\[ P(x) + Q(x) = (x^7 + 3x^5 + x) + (x^7 + 5x + 10) \][/tex]
Combine like terms:
[tex]\[ (x^7 + x^7) + 3x^5 + (x + 5x) + 10 \][/tex]
[tex]\[ = 2x^7 + 3x^5 + 6x + 10 \][/tex]
The degree of the resulting polynomial is determined by the highest power of [tex]\( x \)[/tex], which is:
[tex]\[ \text{Degree of } (P(x) + Q(x)) = 7 \][/tex]
2. Subtracting the polynomials:
When we subtract polynomial [tex]\( Q(x) \)[/tex] from [tex]\( P(x) \)[/tex]:
[tex]\[ P(x) - Q(x) = (x^7 + 3x^5 + x) - (x^7 + 5x + 10) \][/tex]
Combine like terms:
[tex]\[ (x^7 - x^7) + 3x^5 + (x - 5x) - 10 \][/tex]
[tex]\[ = 0 + 3x^5 - 4x - 10 \][/tex]
[tex]\[ = 3x^5 - 4x - 10 \][/tex]
The degree of the resulting polynomial is determined by the highest power of [tex]\( x \)[/tex], which is:
[tex]\[ \text{Degree of } (P(x) - Q(x)) = 5 \][/tex]
3. Conclusion:
By comparing the degrees:
- The degree of the polynomial after addition is [tex]\(7\)[/tex].
- The degree of the polynomial after subtraction is [tex]\(5\)[/tex].
Hence, adding their polynomials together results in a polynomial with degree 7, but subtracting one polynomial from the other results in a polynomial with degree 5. Therefore, there is a difference between the degree of the sum and the degree of the difference of the polynomials.
The correct option is:
- Adding their polynomials together results in a polynomial with degree 7, but subtracting one polynomial from the other results in a polynomial with degree 5.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.