Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve this problem step-by-step using the law of universal gravitation.
1. Identify the given values:
- Gravitational constant, [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex]
- Mass of the first asteroid, [tex]\( m_1 = 5 \times 10^8 \, \text{kg} \)[/tex]
- Distance between the asteroids, [tex]\( r = 50,000 \, \text{m} \)[/tex]
- Gravitational force between them, [tex]\( F = 8.67 \times 10^{-2} \, \text{N} \)[/tex]
2. Recall the formula for gravitational force:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects,
- [tex]\( r \)[/tex] is the distance between them.
3. Rearrange the formula to solve for the mass of the second asteroid [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
4. Substitute the given values into the formula:
[tex]\[ m_2 = \frac{8.67 \times 10^{-2} \, \text{N} \cdot (50,000 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \cdot 5 \times 10^8 \, \text{kg}} \][/tex]
5. Calculate the numerator:
- Distance squared: [tex]\( (50,000)^2 = 2.5 \times 10^9 \, \text{m}^2 \)[/tex]
- Force times distance squared: [tex]\( 8.67 \times 10^{-2} \times 2.5 \times 10^9 = 2.1675 \times 10^8 \)[/tex]
6. Calculate the denominator:
[tex]\[ 6.67430 \times 10^{-11} \times 5 \times 10^8 = 3.33715 \times 10^{-2} \][/tex]
7. Divide the numerator by the denominator to find [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{2.1675 \times 10^8}{3.33715 \times 10^{-2}} = 6.49506315269017 \times 10^9 \][/tex]
8. Express the final result with the correct significant figures:
[tex]\[ m_2 \approx 6.5 \times 10^9 \, \text{kg} \][/tex]
Therefore, the correct answer is:
A. [tex]\( 6.5 \times 10^9 \, \text{kg} \)[/tex]
1. Identify the given values:
- Gravitational constant, [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex]
- Mass of the first asteroid, [tex]\( m_1 = 5 \times 10^8 \, \text{kg} \)[/tex]
- Distance between the asteroids, [tex]\( r = 50,000 \, \text{m} \)[/tex]
- Gravitational force between them, [tex]\( F = 8.67 \times 10^{-2} \, \text{N} \)[/tex]
2. Recall the formula for gravitational force:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects,
- [tex]\( r \)[/tex] is the distance between them.
3. Rearrange the formula to solve for the mass of the second asteroid [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]
4. Substitute the given values into the formula:
[tex]\[ m_2 = \frac{8.67 \times 10^{-2} \, \text{N} \cdot (50,000 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \cdot 5 \times 10^8 \, \text{kg}} \][/tex]
5. Calculate the numerator:
- Distance squared: [tex]\( (50,000)^2 = 2.5 \times 10^9 \, \text{m}^2 \)[/tex]
- Force times distance squared: [tex]\( 8.67 \times 10^{-2} \times 2.5 \times 10^9 = 2.1675 \times 10^8 \)[/tex]
6. Calculate the denominator:
[tex]\[ 6.67430 \times 10^{-11} \times 5 \times 10^8 = 3.33715 \times 10^{-2} \][/tex]
7. Divide the numerator by the denominator to find [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{2.1675 \times 10^8}{3.33715 \times 10^{-2}} = 6.49506315269017 \times 10^9 \][/tex]
8. Express the final result with the correct significant figures:
[tex]\[ m_2 \approx 6.5 \times 10^9 \, \text{kg} \][/tex]
Therefore, the correct answer is:
A. [tex]\( 6.5 \times 10^9 \, \text{kg} \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.