At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Two asteroids are 50,000 m apart. One has a mass of [tex]\(5 \times 10^8 \, \text{kg}\)[/tex]. If the force of gravity between them is [tex]\(8.67 \times 10^{-2} \, \text{N}\)[/tex], what is the mass of the other asteroid?

A. [tex]\(6.5 \times 10^9 \, \text{kg}\)[/tex]

B. [tex]\(7.2 \times 10^9 \, \text{kg}\)[/tex]

C. [tex]\(5.0 \times 10^8 \, \text{kg}\)[/tex]

D. [tex]\(5.8 \times 10^8 \, \text{kg}\)[/tex]


Sagot :

Certainly! Let's solve this problem step-by-step using the law of universal gravitation.

1. Identify the given values:
- Gravitational constant, [tex]\( G = 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)[/tex]
- Mass of the first asteroid, [tex]\( m_1 = 5 \times 10^8 \, \text{kg} \)[/tex]
- Distance between the asteroids, [tex]\( r = 50,000 \, \text{m} \)[/tex]
- Gravitational force between them, [tex]\( F = 8.67 \times 10^{-2} \, \text{N} \)[/tex]

2. Recall the formula for gravitational force:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force,
- [tex]\( G \)[/tex] is the gravitational constant,
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects,
- [tex]\( r \)[/tex] is the distance between them.

3. Rearrange the formula to solve for the mass of the second asteroid [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F \cdot r^2}{G \cdot m_1} \][/tex]

4. Substitute the given values into the formula:
[tex]\[ m_2 = \frac{8.67 \times 10^{-2} \, \text{N} \cdot (50,000 \, \text{m})^2}{6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \cdot 5 \times 10^8 \, \text{kg}} \][/tex]

5. Calculate the numerator:
- Distance squared: [tex]\( (50,000)^2 = 2.5 \times 10^9 \, \text{m}^2 \)[/tex]
- Force times distance squared: [tex]\( 8.67 \times 10^{-2} \times 2.5 \times 10^9 = 2.1675 \times 10^8 \)[/tex]

6. Calculate the denominator:
[tex]\[ 6.67430 \times 10^{-11} \times 5 \times 10^8 = 3.33715 \times 10^{-2} \][/tex]

7. Divide the numerator by the denominator to find [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{2.1675 \times 10^8}{3.33715 \times 10^{-2}} = 6.49506315269017 \times 10^9 \][/tex]

8. Express the final result with the correct significant figures:
[tex]\[ m_2 \approx 6.5 \times 10^9 \, \text{kg} \][/tex]

Therefore, the correct answer is:

A. [tex]\( 6.5 \times 10^9 \, \text{kg} \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.