Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the limit [tex]\(\lim _{x \rightarrow y} \frac{\sin ^2 x-\sin ^2 y}{x^2-y^2}\)[/tex], we can proceed with the following steps:
1. Recognize the difference of squares:
The numerator [tex]\(\sin^2 x - \sin^2 y\)[/tex] can be factored as:
[tex]\[ \sin^2 x - \sin^2 y = (\sin x - \sin y)(\sin x + \sin y) \][/tex]
Similarly, the denominator [tex]\(x^2 - y^2\)[/tex] can be factored as:
[tex]\[ x^2 - y^2 = (x - y)(x + y) \][/tex]
2. Rewrite the fraction:
Using the factorizations from step 1, we can rewrite the limit expression:
[tex]\[ \frac{\sin^2 x - \sin^2 y}{x^2 - y^2} = \frac{(\sin x - \sin y)(\sin x + \sin y)}{(x - y)(x + y)} \][/tex]
3. Cancel common terms:
As long as [tex]\(x \neq y\)[/tex], we can cancel the [tex]\((x - y)\)[/tex] term from the numerator and denominator:
[tex]\[ \frac{(\sin x - \sin y)(\sin x + \sin y)}{(x - y)(x + y)} = \frac{\sin x - \sin y}{x - y} \cdot \frac{\sin x + \sin y}{x + y} \][/tex]
4. Use the definition of the derivative:
Notice that the first term [tex]\(\frac{\sin x - \sin y}{x - y}\)[/tex] can be recognized as the difference quotient of [tex]\(\sin x\)[/tex] at [tex]\(x = y\)[/tex]. As [tex]\(x\)[/tex] approaches [tex]\(y\)[/tex], this term approaches the derivative of [tex]\(\sin x\)[/tex] at [tex]\(x = y\)[/tex]:
[tex]\[ \lim_{x \to y} \frac{\sin x - \sin y}{x - y} = \cos y \][/tex]
The second term [tex]\(\frac{\sin x + \sin y}{x + y}\)[/tex] approaches [tex]\(\frac{2 \sin y}{2y} = \frac{\sin y}{y}\)[/tex] as [tex]\(x\)[/tex] approaches [tex]\(y\)[/tex]:
[tex]\[ \lim_{x \to y} \frac{\sin x + \sin y}{x + y} = \frac{\sin y}{y} \][/tex]
5. Combine the results:
Now, we can combine these results together:
[tex]\[ \lim_{x \to y} \frac{\sin^2 x - \sin^2 y}{x^2 - y^2} = \left(\cos y\right) \cdot \left(\frac{\sin y}{y}\right) \][/tex]
Thus, the limit evaluates to:
[tex]\[ \boxed{\frac{\sin(2y)}{2y}} \][/tex]
1. Recognize the difference of squares:
The numerator [tex]\(\sin^2 x - \sin^2 y\)[/tex] can be factored as:
[tex]\[ \sin^2 x - \sin^2 y = (\sin x - \sin y)(\sin x + \sin y) \][/tex]
Similarly, the denominator [tex]\(x^2 - y^2\)[/tex] can be factored as:
[tex]\[ x^2 - y^2 = (x - y)(x + y) \][/tex]
2. Rewrite the fraction:
Using the factorizations from step 1, we can rewrite the limit expression:
[tex]\[ \frac{\sin^2 x - \sin^2 y}{x^2 - y^2} = \frac{(\sin x - \sin y)(\sin x + \sin y)}{(x - y)(x + y)} \][/tex]
3. Cancel common terms:
As long as [tex]\(x \neq y\)[/tex], we can cancel the [tex]\((x - y)\)[/tex] term from the numerator and denominator:
[tex]\[ \frac{(\sin x - \sin y)(\sin x + \sin y)}{(x - y)(x + y)} = \frac{\sin x - \sin y}{x - y} \cdot \frac{\sin x + \sin y}{x + y} \][/tex]
4. Use the definition of the derivative:
Notice that the first term [tex]\(\frac{\sin x - \sin y}{x - y}\)[/tex] can be recognized as the difference quotient of [tex]\(\sin x\)[/tex] at [tex]\(x = y\)[/tex]. As [tex]\(x\)[/tex] approaches [tex]\(y\)[/tex], this term approaches the derivative of [tex]\(\sin x\)[/tex] at [tex]\(x = y\)[/tex]:
[tex]\[ \lim_{x \to y} \frac{\sin x - \sin y}{x - y} = \cos y \][/tex]
The second term [tex]\(\frac{\sin x + \sin y}{x + y}\)[/tex] approaches [tex]\(\frac{2 \sin y}{2y} = \frac{\sin y}{y}\)[/tex] as [tex]\(x\)[/tex] approaches [tex]\(y\)[/tex]:
[tex]\[ \lim_{x \to y} \frac{\sin x + \sin y}{x + y} = \frac{\sin y}{y} \][/tex]
5. Combine the results:
Now, we can combine these results together:
[tex]\[ \lim_{x \to y} \frac{\sin^2 x - \sin^2 y}{x^2 - y^2} = \left(\cos y\right) \cdot \left(\frac{\sin y}{y}\right) \][/tex]
Thus, the limit evaluates to:
[tex]\[ \boxed{\frac{\sin(2y)}{2y}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.