Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the limit [tex]\(\lim _{x \rightarrow y} \frac{\sin ^2 x-\sin ^2 y}{x^2-y^2}\)[/tex], we can proceed with the following steps:
1. Recognize the difference of squares:
The numerator [tex]\(\sin^2 x - \sin^2 y\)[/tex] can be factored as:
[tex]\[ \sin^2 x - \sin^2 y = (\sin x - \sin y)(\sin x + \sin y) \][/tex]
Similarly, the denominator [tex]\(x^2 - y^2\)[/tex] can be factored as:
[tex]\[ x^2 - y^2 = (x - y)(x + y) \][/tex]
2. Rewrite the fraction:
Using the factorizations from step 1, we can rewrite the limit expression:
[tex]\[ \frac{\sin^2 x - \sin^2 y}{x^2 - y^2} = \frac{(\sin x - \sin y)(\sin x + \sin y)}{(x - y)(x + y)} \][/tex]
3. Cancel common terms:
As long as [tex]\(x \neq y\)[/tex], we can cancel the [tex]\((x - y)\)[/tex] term from the numerator and denominator:
[tex]\[ \frac{(\sin x - \sin y)(\sin x + \sin y)}{(x - y)(x + y)} = \frac{\sin x - \sin y}{x - y} \cdot \frac{\sin x + \sin y}{x + y} \][/tex]
4. Use the definition of the derivative:
Notice that the first term [tex]\(\frac{\sin x - \sin y}{x - y}\)[/tex] can be recognized as the difference quotient of [tex]\(\sin x\)[/tex] at [tex]\(x = y\)[/tex]. As [tex]\(x\)[/tex] approaches [tex]\(y\)[/tex], this term approaches the derivative of [tex]\(\sin x\)[/tex] at [tex]\(x = y\)[/tex]:
[tex]\[ \lim_{x \to y} \frac{\sin x - \sin y}{x - y} = \cos y \][/tex]
The second term [tex]\(\frac{\sin x + \sin y}{x + y}\)[/tex] approaches [tex]\(\frac{2 \sin y}{2y} = \frac{\sin y}{y}\)[/tex] as [tex]\(x\)[/tex] approaches [tex]\(y\)[/tex]:
[tex]\[ \lim_{x \to y} \frac{\sin x + \sin y}{x + y} = \frac{\sin y}{y} \][/tex]
5. Combine the results:
Now, we can combine these results together:
[tex]\[ \lim_{x \to y} \frac{\sin^2 x - \sin^2 y}{x^2 - y^2} = \left(\cos y\right) \cdot \left(\frac{\sin y}{y}\right) \][/tex]
Thus, the limit evaluates to:
[tex]\[ \boxed{\frac{\sin(2y)}{2y}} \][/tex]
1. Recognize the difference of squares:
The numerator [tex]\(\sin^2 x - \sin^2 y\)[/tex] can be factored as:
[tex]\[ \sin^2 x - \sin^2 y = (\sin x - \sin y)(\sin x + \sin y) \][/tex]
Similarly, the denominator [tex]\(x^2 - y^2\)[/tex] can be factored as:
[tex]\[ x^2 - y^2 = (x - y)(x + y) \][/tex]
2. Rewrite the fraction:
Using the factorizations from step 1, we can rewrite the limit expression:
[tex]\[ \frac{\sin^2 x - \sin^2 y}{x^2 - y^2} = \frac{(\sin x - \sin y)(\sin x + \sin y)}{(x - y)(x + y)} \][/tex]
3. Cancel common terms:
As long as [tex]\(x \neq y\)[/tex], we can cancel the [tex]\((x - y)\)[/tex] term from the numerator and denominator:
[tex]\[ \frac{(\sin x - \sin y)(\sin x + \sin y)}{(x - y)(x + y)} = \frac{\sin x - \sin y}{x - y} \cdot \frac{\sin x + \sin y}{x + y} \][/tex]
4. Use the definition of the derivative:
Notice that the first term [tex]\(\frac{\sin x - \sin y}{x - y}\)[/tex] can be recognized as the difference quotient of [tex]\(\sin x\)[/tex] at [tex]\(x = y\)[/tex]. As [tex]\(x\)[/tex] approaches [tex]\(y\)[/tex], this term approaches the derivative of [tex]\(\sin x\)[/tex] at [tex]\(x = y\)[/tex]:
[tex]\[ \lim_{x \to y} \frac{\sin x - \sin y}{x - y} = \cos y \][/tex]
The second term [tex]\(\frac{\sin x + \sin y}{x + y}\)[/tex] approaches [tex]\(\frac{2 \sin y}{2y} = \frac{\sin y}{y}\)[/tex] as [tex]\(x\)[/tex] approaches [tex]\(y\)[/tex]:
[tex]\[ \lim_{x \to y} \frac{\sin x + \sin y}{x + y} = \frac{\sin y}{y} \][/tex]
5. Combine the results:
Now, we can combine these results together:
[tex]\[ \lim_{x \to y} \frac{\sin^2 x - \sin^2 y}{x^2 - y^2} = \left(\cos y\right) \cdot \left(\frac{\sin y}{y}\right) \][/tex]
Thus, the limit evaluates to:
[tex]\[ \boxed{\frac{\sin(2y)}{2y}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.