Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the limit [tex]\(\lim _{x \rightarrow y} \frac{\sin ^2 x-\sin ^2 y}{x^2-y^2}\)[/tex], we can proceed with the following steps:
1. Recognize the difference of squares:
The numerator [tex]\(\sin^2 x - \sin^2 y\)[/tex] can be factored as:
[tex]\[ \sin^2 x - \sin^2 y = (\sin x - \sin y)(\sin x + \sin y) \][/tex]
Similarly, the denominator [tex]\(x^2 - y^2\)[/tex] can be factored as:
[tex]\[ x^2 - y^2 = (x - y)(x + y) \][/tex]
2. Rewrite the fraction:
Using the factorizations from step 1, we can rewrite the limit expression:
[tex]\[ \frac{\sin^2 x - \sin^2 y}{x^2 - y^2} = \frac{(\sin x - \sin y)(\sin x + \sin y)}{(x - y)(x + y)} \][/tex]
3. Cancel common terms:
As long as [tex]\(x \neq y\)[/tex], we can cancel the [tex]\((x - y)\)[/tex] term from the numerator and denominator:
[tex]\[ \frac{(\sin x - \sin y)(\sin x + \sin y)}{(x - y)(x + y)} = \frac{\sin x - \sin y}{x - y} \cdot \frac{\sin x + \sin y}{x + y} \][/tex]
4. Use the definition of the derivative:
Notice that the first term [tex]\(\frac{\sin x - \sin y}{x - y}\)[/tex] can be recognized as the difference quotient of [tex]\(\sin x\)[/tex] at [tex]\(x = y\)[/tex]. As [tex]\(x\)[/tex] approaches [tex]\(y\)[/tex], this term approaches the derivative of [tex]\(\sin x\)[/tex] at [tex]\(x = y\)[/tex]:
[tex]\[ \lim_{x \to y} \frac{\sin x - \sin y}{x - y} = \cos y \][/tex]
The second term [tex]\(\frac{\sin x + \sin y}{x + y}\)[/tex] approaches [tex]\(\frac{2 \sin y}{2y} = \frac{\sin y}{y}\)[/tex] as [tex]\(x\)[/tex] approaches [tex]\(y\)[/tex]:
[tex]\[ \lim_{x \to y} \frac{\sin x + \sin y}{x + y} = \frac{\sin y}{y} \][/tex]
5. Combine the results:
Now, we can combine these results together:
[tex]\[ \lim_{x \to y} \frac{\sin^2 x - \sin^2 y}{x^2 - y^2} = \left(\cos y\right) \cdot \left(\frac{\sin y}{y}\right) \][/tex]
Thus, the limit evaluates to:
[tex]\[ \boxed{\frac{\sin(2y)}{2y}} \][/tex]
1. Recognize the difference of squares:
The numerator [tex]\(\sin^2 x - \sin^2 y\)[/tex] can be factored as:
[tex]\[ \sin^2 x - \sin^2 y = (\sin x - \sin y)(\sin x + \sin y) \][/tex]
Similarly, the denominator [tex]\(x^2 - y^2\)[/tex] can be factored as:
[tex]\[ x^2 - y^2 = (x - y)(x + y) \][/tex]
2. Rewrite the fraction:
Using the factorizations from step 1, we can rewrite the limit expression:
[tex]\[ \frac{\sin^2 x - \sin^2 y}{x^2 - y^2} = \frac{(\sin x - \sin y)(\sin x + \sin y)}{(x - y)(x + y)} \][/tex]
3. Cancel common terms:
As long as [tex]\(x \neq y\)[/tex], we can cancel the [tex]\((x - y)\)[/tex] term from the numerator and denominator:
[tex]\[ \frac{(\sin x - \sin y)(\sin x + \sin y)}{(x - y)(x + y)} = \frac{\sin x - \sin y}{x - y} \cdot \frac{\sin x + \sin y}{x + y} \][/tex]
4. Use the definition of the derivative:
Notice that the first term [tex]\(\frac{\sin x - \sin y}{x - y}\)[/tex] can be recognized as the difference quotient of [tex]\(\sin x\)[/tex] at [tex]\(x = y\)[/tex]. As [tex]\(x\)[/tex] approaches [tex]\(y\)[/tex], this term approaches the derivative of [tex]\(\sin x\)[/tex] at [tex]\(x = y\)[/tex]:
[tex]\[ \lim_{x \to y} \frac{\sin x - \sin y}{x - y} = \cos y \][/tex]
The second term [tex]\(\frac{\sin x + \sin y}{x + y}\)[/tex] approaches [tex]\(\frac{2 \sin y}{2y} = \frac{\sin y}{y}\)[/tex] as [tex]\(x\)[/tex] approaches [tex]\(y\)[/tex]:
[tex]\[ \lim_{x \to y} \frac{\sin x + \sin y}{x + y} = \frac{\sin y}{y} \][/tex]
5. Combine the results:
Now, we can combine these results together:
[tex]\[ \lim_{x \to y} \frac{\sin^2 x - \sin^2 y}{x^2 - y^2} = \left(\cos y\right) \cdot \left(\frac{\sin y}{y}\right) \][/tex]
Thus, the limit evaluates to:
[tex]\[ \boxed{\frac{\sin(2y)}{2y}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.