Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's analyze the functions [tex]\( f(x) = -(7)^x \)[/tex] and [tex]\( g(x) = 7^x \)[/tex] to determine their domain and range.
1. Domain Analysis:
- Both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are exponential functions involving the base 7.
- Exponential functions are defined for all real numbers since exponentiation can be performed on any real number [tex]\( x \)[/tex].
Therefore, the domain for both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] is all real numbers.
2. Range Analysis:
- For [tex]\( g(x) = 7^x \)[/tex]:
- Exponential functions with a positive base always yield positive results.
- As [tex]\( x \)[/tex] varies from [tex]\(-\infty\)[/tex] to [tex]\(\infty\)[/tex], [tex]\( g(x) \)[/tex] moves from 0 (approaching but never reaching) to [tex]\(\infty\)[/tex].
- Therefore, the range of [tex]\( g(x) = 7^x \)[/tex] is all positive real numbers.
- For [tex]\( f(x) = -(7)^x \)[/tex]:
- This function is the negative of an exponential function.
- As [tex]\( 7^x \)[/tex] is always positive for all real [tex]\( x \)[/tex], multiplying by -1 will give all negative values.
- Thus, as [tex]\( x \)[/tex] varies from [tex]\(-\infty\)[/tex] to [tex]\(\infty\)[/tex], [tex]\( f(x) \)[/tex] moves from 0 (approaching but never reaching) to [tex]\(-\infty\)[/tex].
- Therefore, the range of [tex]\( f(x) = -(7)^x \)[/tex] is all negative real numbers.
In conclusion:
- Both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have the same domain: all real numbers.
- [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have different ranges: [tex]\( f(x) \)[/tex] has all negative real numbers, while [tex]\( g(x) \)[/tex] has all positive real numbers.
Thus, the best statement to describe the domain and range of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] is:
[tex]\[ \boxed{f(x) \text{ and } g(x) \text{ have the same domain but different ranges.}} \][/tex]
1. Domain Analysis:
- Both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are exponential functions involving the base 7.
- Exponential functions are defined for all real numbers since exponentiation can be performed on any real number [tex]\( x \)[/tex].
Therefore, the domain for both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] is all real numbers.
2. Range Analysis:
- For [tex]\( g(x) = 7^x \)[/tex]:
- Exponential functions with a positive base always yield positive results.
- As [tex]\( x \)[/tex] varies from [tex]\(-\infty\)[/tex] to [tex]\(\infty\)[/tex], [tex]\( g(x) \)[/tex] moves from 0 (approaching but never reaching) to [tex]\(\infty\)[/tex].
- Therefore, the range of [tex]\( g(x) = 7^x \)[/tex] is all positive real numbers.
- For [tex]\( f(x) = -(7)^x \)[/tex]:
- This function is the negative of an exponential function.
- As [tex]\( 7^x \)[/tex] is always positive for all real [tex]\( x \)[/tex], multiplying by -1 will give all negative values.
- Thus, as [tex]\( x \)[/tex] varies from [tex]\(-\infty\)[/tex] to [tex]\(\infty\)[/tex], [tex]\( f(x) \)[/tex] moves from 0 (approaching but never reaching) to [tex]\(-\infty\)[/tex].
- Therefore, the range of [tex]\( f(x) = -(7)^x \)[/tex] is all negative real numbers.
In conclusion:
- Both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have the same domain: all real numbers.
- [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have different ranges: [tex]\( f(x) \)[/tex] has all negative real numbers, while [tex]\( g(x) \)[/tex] has all positive real numbers.
Thus, the best statement to describe the domain and range of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] is:
[tex]\[ \boxed{f(x) \text{ and } g(x) \text{ have the same domain but different ranges.}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.