Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which function has a range of [tex]\( y < 3 \)[/tex], let's evaluate each of the given functions:
1. Function: [tex]\( y = 3(2)^x \)[/tex]
- For any real number [tex]\( x \)[/tex], the expression [tex]\( 2^x \)[/tex] is always positive, giving values greater than 1 when [tex]\( x \)[/tex] is positive and values between 0 and 1 when [tex]\( x \)[/tex] is negative.
- Therefore, [tex]\( 3(2)^x \)[/tex] is always positive and greater than 0.
- The range is [tex]\( y > 0 \)[/tex].
2. Function: [tex]\( y = 2(3)^x \)[/tex]
- For any real number [tex]\( x \)[/tex], the expression [tex]\( 3^x \)[/tex] is also always positive, leading to values greater than 3 when [tex]\( x \)[/tex] is positive and values between 0 and 1 when [tex]\( x \)[/tex] is negative.
- Thus, [tex]\( 2(3)^x \)[/tex] is always positive and greater than 0.
- The range is [tex]\( y > 0 \)[/tex].
3. Function: [tex]\( y = -(2)^x + 3 \)[/tex]
- For any real number [tex]\( x \)[/tex], the term [tex]\( 2^x \)[/tex] is positive, making [tex]\( -(2)^x \)[/tex] negative.
- When you add 3 to a negative value, the resulting value is less than 3.
- Thus, the function [tex]\( y = -(2)^x + 3 \)[/tex] yields values [tex]\( y < 3 \)[/tex].
4. Function: [tex]\( y = (2)^x - 3 \)[/tex]
- For any real number [tex]\( x \)[/tex], the term [tex]\( 2^x \)[/tex] is positive.
- Subtracting 3 from a positive value can yield positive values starting from [tex]\( -3 \)[/tex] upward.
- The range is [tex]\( y > -3 \)[/tex].
Out of the evaluated functions, the third function [tex]\( y = -(2)^x + 3 \)[/tex] is the one that gives a range of [tex]\( y < 3 \)[/tex].
Hence, the function that has a range of [tex]\( y < 3 \)[/tex] is:
[tex]\[ y = -(2)^x + 3 \][/tex]
1. Function: [tex]\( y = 3(2)^x \)[/tex]
- For any real number [tex]\( x \)[/tex], the expression [tex]\( 2^x \)[/tex] is always positive, giving values greater than 1 when [tex]\( x \)[/tex] is positive and values between 0 and 1 when [tex]\( x \)[/tex] is negative.
- Therefore, [tex]\( 3(2)^x \)[/tex] is always positive and greater than 0.
- The range is [tex]\( y > 0 \)[/tex].
2. Function: [tex]\( y = 2(3)^x \)[/tex]
- For any real number [tex]\( x \)[/tex], the expression [tex]\( 3^x \)[/tex] is also always positive, leading to values greater than 3 when [tex]\( x \)[/tex] is positive and values between 0 and 1 when [tex]\( x \)[/tex] is negative.
- Thus, [tex]\( 2(3)^x \)[/tex] is always positive and greater than 0.
- The range is [tex]\( y > 0 \)[/tex].
3. Function: [tex]\( y = -(2)^x + 3 \)[/tex]
- For any real number [tex]\( x \)[/tex], the term [tex]\( 2^x \)[/tex] is positive, making [tex]\( -(2)^x \)[/tex] negative.
- When you add 3 to a negative value, the resulting value is less than 3.
- Thus, the function [tex]\( y = -(2)^x + 3 \)[/tex] yields values [tex]\( y < 3 \)[/tex].
4. Function: [tex]\( y = (2)^x - 3 \)[/tex]
- For any real number [tex]\( x \)[/tex], the term [tex]\( 2^x \)[/tex] is positive.
- Subtracting 3 from a positive value can yield positive values starting from [tex]\( -3 \)[/tex] upward.
- The range is [tex]\( y > -3 \)[/tex].
Out of the evaluated functions, the third function [tex]\( y = -(2)^x + 3 \)[/tex] is the one that gives a range of [tex]\( y < 3 \)[/tex].
Hence, the function that has a range of [tex]\( y < 3 \)[/tex] is:
[tex]\[ y = -(2)^x + 3 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.