Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Which function has a range of [tex]\( y \ \textless \ 3 \)[/tex]?

A. [tex]\( y = 3(2)^x \)[/tex]
B. [tex]\( y = 2(3)^x \)[/tex]
C. [tex]\( y = -(2)^x + 3 \)[/tex]
D. [tex]\( y = (2)^x - 3 \)[/tex]


Sagot :

To determine which function has a range of [tex]\( y < 3 \)[/tex], let's evaluate each of the given functions:

1. Function: [tex]\( y = 3(2)^x \)[/tex]
- For any real number [tex]\( x \)[/tex], the expression [tex]\( 2^x \)[/tex] is always positive, giving values greater than 1 when [tex]\( x \)[/tex] is positive and values between 0 and 1 when [tex]\( x \)[/tex] is negative.
- Therefore, [tex]\( 3(2)^x \)[/tex] is always positive and greater than 0.
- The range is [tex]\( y > 0 \)[/tex].

2. Function: [tex]\( y = 2(3)^x \)[/tex]
- For any real number [tex]\( x \)[/tex], the expression [tex]\( 3^x \)[/tex] is also always positive, leading to values greater than 3 when [tex]\( x \)[/tex] is positive and values between 0 and 1 when [tex]\( x \)[/tex] is negative.
- Thus, [tex]\( 2(3)^x \)[/tex] is always positive and greater than 0.
- The range is [tex]\( y > 0 \)[/tex].

3. Function: [tex]\( y = -(2)^x + 3 \)[/tex]
- For any real number [tex]\( x \)[/tex], the term [tex]\( 2^x \)[/tex] is positive, making [tex]\( -(2)^x \)[/tex] negative.
- When you add 3 to a negative value, the resulting value is less than 3.
- Thus, the function [tex]\( y = -(2)^x + 3 \)[/tex] yields values [tex]\( y < 3 \)[/tex].

4. Function: [tex]\( y = (2)^x - 3 \)[/tex]
- For any real number [tex]\( x \)[/tex], the term [tex]\( 2^x \)[/tex] is positive.
- Subtracting 3 from a positive value can yield positive values starting from [tex]\( -3 \)[/tex] upward.
- The range is [tex]\( y > -3 \)[/tex].

Out of the evaluated functions, the third function [tex]\( y = -(2)^x + 3 \)[/tex] is the one that gives a range of [tex]\( y < 3 \)[/tex].

Hence, the function that has a range of [tex]\( y < 3 \)[/tex] is:
[tex]\[ y = -(2)^x + 3 \][/tex]