Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which function has a range of [tex]\( y < 3 \)[/tex], let's evaluate each of the given functions:
1. Function: [tex]\( y = 3(2)^x \)[/tex]
- For any real number [tex]\( x \)[/tex], the expression [tex]\( 2^x \)[/tex] is always positive, giving values greater than 1 when [tex]\( x \)[/tex] is positive and values between 0 and 1 when [tex]\( x \)[/tex] is negative.
- Therefore, [tex]\( 3(2)^x \)[/tex] is always positive and greater than 0.
- The range is [tex]\( y > 0 \)[/tex].
2. Function: [tex]\( y = 2(3)^x \)[/tex]
- For any real number [tex]\( x \)[/tex], the expression [tex]\( 3^x \)[/tex] is also always positive, leading to values greater than 3 when [tex]\( x \)[/tex] is positive and values between 0 and 1 when [tex]\( x \)[/tex] is negative.
- Thus, [tex]\( 2(3)^x \)[/tex] is always positive and greater than 0.
- The range is [tex]\( y > 0 \)[/tex].
3. Function: [tex]\( y = -(2)^x + 3 \)[/tex]
- For any real number [tex]\( x \)[/tex], the term [tex]\( 2^x \)[/tex] is positive, making [tex]\( -(2)^x \)[/tex] negative.
- When you add 3 to a negative value, the resulting value is less than 3.
- Thus, the function [tex]\( y = -(2)^x + 3 \)[/tex] yields values [tex]\( y < 3 \)[/tex].
4. Function: [tex]\( y = (2)^x - 3 \)[/tex]
- For any real number [tex]\( x \)[/tex], the term [tex]\( 2^x \)[/tex] is positive.
- Subtracting 3 from a positive value can yield positive values starting from [tex]\( -3 \)[/tex] upward.
- The range is [tex]\( y > -3 \)[/tex].
Out of the evaluated functions, the third function [tex]\( y = -(2)^x + 3 \)[/tex] is the one that gives a range of [tex]\( y < 3 \)[/tex].
Hence, the function that has a range of [tex]\( y < 3 \)[/tex] is:
[tex]\[ y = -(2)^x + 3 \][/tex]
1. Function: [tex]\( y = 3(2)^x \)[/tex]
- For any real number [tex]\( x \)[/tex], the expression [tex]\( 2^x \)[/tex] is always positive, giving values greater than 1 when [tex]\( x \)[/tex] is positive and values between 0 and 1 when [tex]\( x \)[/tex] is negative.
- Therefore, [tex]\( 3(2)^x \)[/tex] is always positive and greater than 0.
- The range is [tex]\( y > 0 \)[/tex].
2. Function: [tex]\( y = 2(3)^x \)[/tex]
- For any real number [tex]\( x \)[/tex], the expression [tex]\( 3^x \)[/tex] is also always positive, leading to values greater than 3 when [tex]\( x \)[/tex] is positive and values between 0 and 1 when [tex]\( x \)[/tex] is negative.
- Thus, [tex]\( 2(3)^x \)[/tex] is always positive and greater than 0.
- The range is [tex]\( y > 0 \)[/tex].
3. Function: [tex]\( y = -(2)^x + 3 \)[/tex]
- For any real number [tex]\( x \)[/tex], the term [tex]\( 2^x \)[/tex] is positive, making [tex]\( -(2)^x \)[/tex] negative.
- When you add 3 to a negative value, the resulting value is less than 3.
- Thus, the function [tex]\( y = -(2)^x + 3 \)[/tex] yields values [tex]\( y < 3 \)[/tex].
4. Function: [tex]\( y = (2)^x - 3 \)[/tex]
- For any real number [tex]\( x \)[/tex], the term [tex]\( 2^x \)[/tex] is positive.
- Subtracting 3 from a positive value can yield positive values starting from [tex]\( -3 \)[/tex] upward.
- The range is [tex]\( y > -3 \)[/tex].
Out of the evaluated functions, the third function [tex]\( y = -(2)^x + 3 \)[/tex] is the one that gives a range of [tex]\( y < 3 \)[/tex].
Hence, the function that has a range of [tex]\( y < 3 \)[/tex] is:
[tex]\[ y = -(2)^x + 3 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.