Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find the angular speed (ω, in radians/second) associated with rotating a central angle θ = 21π in time t = 6 sec.

Note: Enter the exact, fully simplified answer.

ω = _____ rad/sec

Sagot :

To find the angular speed [tex]\( \omega \)[/tex] given a central angle [tex]\(\theta\)[/tex] and a time [tex]\( t \)[/tex], we can use the formula for angular speed:

[tex]\[ \omega = \frac{\theta}{t} \][/tex]

Given:
[tex]\[ \theta = 21\pi \, \text{radians} \][/tex]
[tex]\[ t = 6 \, \text{seconds} \][/tex]

Substitute the given values into the formula:

[tex]\[ \omega = \frac{21\pi}{6} \][/tex]

Simplify the fraction:

[tex]\[ \omega = \frac{21\pi}{6} = \frac{21}{6}\pi = 3.5\pi \][/tex]

Thus, the exact value for the angular speed [tex]\(\omega\)[/tex] is:

[tex]\[ \omega = 3.5\pi \,\text{radians/second} \][/tex]

So, [tex]\(\omega = \boxed{10.995574287564276} \, \text{radians/second}\)[/tex].