Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve the given problem step-by-step using Charles's Law. Charles's Law states that for a fixed amount of gas at a constant pressure, the volume of the gas is directly proportional to its absolute temperature. The formula is:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Where:
- [tex]\( V_1 \)[/tex] is the initial volume of the gas.
- [tex]\( T_1 \)[/tex] is the initial absolute temperature in Kelvin.
- [tex]\( V_2 \)[/tex] is the final volume of the gas.
- [tex]\( T_2 \)[/tex] is the final absolute temperature in Kelvin.
Given:
- [tex]\( V_1 = 1.0 \, \text{L} \)[/tex]
- [tex]\( T_1 = 22^{\circ} \text{C} \)[/tex]
- [tex]\( T_2 = 52^{\circ} \text{C} \)[/tex]
We need to find [tex]\( V_2 \)[/tex], the final volume of the tire.
First, we need to convert the temperatures from Celsius to Kelvin. The conversion formula is:
[tex]\[ T (\text{K}) = T (\text{C}) + 273.15 \][/tex]
So, the initial temperature [tex]\( T_1 \)[/tex] in Kelvin is:
[tex]\[ T_1 = 22 + 273.15 = 295.15 \, \text{K} \][/tex]
And the final temperature [tex]\( T_2 \)[/tex] in Kelvin is:
[tex]\[ T_2 = 52 + 273.15 = 325.15 \, \text{K} \][/tex]
Now, apply Charles's Law to find the final volume [tex]\( V_2 \)[/tex]:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Rearranging the equation to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = V_1 \times \frac{T_2}{T_1} \][/tex]
Substitute the known values:
[tex]\[ V_2 = 1.0 \, \text{L} \times \frac{325.15 \, \text{K}}{295.15 \, \text{K}} \][/tex]
Calculating the value:
[tex]\[ V_2 \approx 1.0 \times 1.1016432322547858 = 1.1016432322547858 \, \text{L} \][/tex]
Considering the significant figures, we notice that all the initial values [tex]\(1.0 \, \text{L}\)[/tex], [tex]\(22^{\circ} \text{C}\)[/tex], and [tex]\(52^{\circ} \text{C}\)[/tex] are given to two significant figures. Therefore, our final result should be rounded to two significant figures as well.
Thus, the final volume [tex]\( V_2 \)[/tex] of the tire, rounded to two significant figures, is:
[tex]\[ V_2 \approx 1.1 \, \text{L} \][/tex]
So, the resulting volume of the tire is [tex]\( \boxed{1.1} \, \text{L} \)[/tex] when the temperature is increased to [tex]\( 52^{\circ} \text{C} \)[/tex].
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Where:
- [tex]\( V_1 \)[/tex] is the initial volume of the gas.
- [tex]\( T_1 \)[/tex] is the initial absolute temperature in Kelvin.
- [tex]\( V_2 \)[/tex] is the final volume of the gas.
- [tex]\( T_2 \)[/tex] is the final absolute temperature in Kelvin.
Given:
- [tex]\( V_1 = 1.0 \, \text{L} \)[/tex]
- [tex]\( T_1 = 22^{\circ} \text{C} \)[/tex]
- [tex]\( T_2 = 52^{\circ} \text{C} \)[/tex]
We need to find [tex]\( V_2 \)[/tex], the final volume of the tire.
First, we need to convert the temperatures from Celsius to Kelvin. The conversion formula is:
[tex]\[ T (\text{K}) = T (\text{C}) + 273.15 \][/tex]
So, the initial temperature [tex]\( T_1 \)[/tex] in Kelvin is:
[tex]\[ T_1 = 22 + 273.15 = 295.15 \, \text{K} \][/tex]
And the final temperature [tex]\( T_2 \)[/tex] in Kelvin is:
[tex]\[ T_2 = 52 + 273.15 = 325.15 \, \text{K} \][/tex]
Now, apply Charles's Law to find the final volume [tex]\( V_2 \)[/tex]:
[tex]\[ \frac{V_1}{T_1} = \frac{V_2}{T_2} \][/tex]
Rearranging the equation to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = V_1 \times \frac{T_2}{T_1} \][/tex]
Substitute the known values:
[tex]\[ V_2 = 1.0 \, \text{L} \times \frac{325.15 \, \text{K}}{295.15 \, \text{K}} \][/tex]
Calculating the value:
[tex]\[ V_2 \approx 1.0 \times 1.1016432322547858 = 1.1016432322547858 \, \text{L} \][/tex]
Considering the significant figures, we notice that all the initial values [tex]\(1.0 \, \text{L}\)[/tex], [tex]\(22^{\circ} \text{C}\)[/tex], and [tex]\(52^{\circ} \text{C}\)[/tex] are given to two significant figures. Therefore, our final result should be rounded to two significant figures as well.
Thus, the final volume [tex]\( V_2 \)[/tex] of the tire, rounded to two significant figures, is:
[tex]\[ V_2 \approx 1.1 \, \text{L} \][/tex]
So, the resulting volume of the tire is [tex]\( \boxed{1.1} \, \text{L} \)[/tex] when the temperature is increased to [tex]\( 52^{\circ} \text{C} \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.